Главная страница

Автономное профессиональное образовательное учреждение


Скачать 455.62 Kb.
НазваниеАвтономное профессиональное образовательное учреждение
Дата31.05.2022
Размер455.62 Kb.
Формат файлаdocx
Имя файлаTumakova.docx
ТипКурсовая
#561011
страница3 из 8
1   2   3   4   5   6   7   8

1.2 Логика построения шифра и структура ключевой информации ГОСТа


Если внимательно изучить оригинал ГОСТа 28147-89, можно заметить, что в нем содержится описание алгоритмов нескольких уровней. На самом верхнем находятся практические алгоритмы, предназначенные для шифрования массивов данных и выработки для них имитовставки. Все они опираются на три алгоритма низшего уровня, называемые в тексте ГОСТа циклами. Эти фундаментальные алгоритмы упоминаются в данной статье как базовые циклы, чтобы отличать их от всех прочих циклов. Они имеют следующие названия и обозначения, последние приведены в скобках и смысл их будет объяснен позже:

  • цикл зашифрования (32-З);

  • цикл расшифрования (32-Р);

  • цикл выработки имитовставки (16-З).

В свою очередь, каждый из базовых циклов представляет собой многократное повторение одной единственной процедуры, называемой для определенности далее в настоящей работе основным шагом криптопреобразования.

Таким образом, чтобы разобраться в ГОСТе, надо понять три следующие вещи:

  • что такое основной шаг криптопреобразования;

  • как из основных шагов складываются базовые циклы;

  • как из трех базовых циклов складываются все практические алгоритмы ГОСТа.

Прежде чем перейти к изучению этих вопросов, следует поговорить о ключевой информации, используемой алгоритмами ГОСТа. В соответствии с принципом Кирхгофа, которому удовлетворяют все современные известные широкой общественности шифры, именно ее секретность обеспечивает секретность зашифрованного сообщения. В ГОСТе ключевая информация состоит из двух структур данных. Помимо собственно ключа, необходимого для всех шифров, она содержит еще и таблицу замен. Ниже приведены основные характеристики ключевых структур ГОСТа.

Ключ является массивом из восьми 32-битных элементов кода, далее в настоящей работе он обозначается символом К:. В ГОСТе элементы ключа используются как 32-разрядные целые числа без знака: Таким образом, размер ключа составляет 32·8=256 бит или 32 байта.

Таблица замен является матрицей 816, содержащей 4-битовые элементы, которые можно представить в виде целых чисел от 0 до 15. Строки таблицы замен называются узлами замен, они должны содержать различные значения, то есть каждый узел замен должен содержать 16 различных чисел от 0 до 15 в произвольном порядке.

1.3 Основной шаг криптопреобразования




Рис 1.1 — Схема основного шага криптопреобразования алгоритма ГОСТ 28147-89

Основной шаг криптопреобразования по своей сути является оператором, определяющим преобразование 64-битового блока данных. Дополнительным параметром этого оператора является 32-битовый блок, в качестве которого используется какой-либо элемент ключа. Схема алгоритма основного шага приведена на рисунке 1.1

Ниже даны пояснения к алгоритму основного шага:

Определяет исходные данные для основного шага криптопреобразования:

N - преобразуемый 64-битовый блок данных, в ходе выполнения шага его младшая (N1) и старшая (N2) части обрабатываются как отдельные 32-битовые целые числа без знака. Таким образом, можно записать N=(N1,N2).

X - 32-битовый элемент ключа;

Сложение с ключом. Младшая половина преобразуемого блока складывается по модулю 232 с используемым на шаге элементом ключа, результат передается на следующий шаг;

Поблочная замена. 32-битовое значение, полученное на предыдущем шаге, интерпретируется как массив из восьми 4-битовых блоков кода: S=(S0,S1,S2,S3,S4,S5,S6,S7).

Далее значение каждого из восьми блоков заменяется на новое, которое выбирается по таблице замен следующим образом: значение блока Si заменяется на Si-тый по порядку элемент (нумерация с нуля) i-того узла замен (т.е. i-той строки таблицы замен, нумерация также с нуля). Другими словами, в качестве замены для значения блока выбирается элемент из таблицы замен с номером строки, равным номеру заменяемого блока, и номером столбца, равным значению заменяемого блока как 4-битового целого неотрицательного числа. Теперь становится понятным размер таблицы замен: число строк в ней равно числу 4-битных элементов в 32-битном блоке данных, то есть восьми, а число столбцов равно числу различных значений 4-битного блока данных, равному как известно 24, шестнадцати.

Циклический сдвиг на 11 бит влево. Результат предыдущего шага сдвигается циклически на 11 бит в сторону старших разрядов и передается на следующий шаг. На схеме алгоритма символом ?11 обозначена функция циклического сдвига своего аргумента на 11 бит в сторону старших разрядов.

Побитовое сложение: значение, полученное на шаге 3, побитно складывается по модулю 2 со старшей половиной преобразуемого блока.

Сдвиг по цепочке: младшая часть преобразуемого блока сдвигается на место старшей, а на ее место помещается результат выполнения предыдущего шага.

Полученное значение преобразуемого блока возвращается как результат выполнения алгоритма основного шага криптопреобразования.

1   2   3   4   5   6   7   8


написать администратору сайта