Главная страница
Навигация по странице:

  • 3.1 Калькулятор

  • 3.1.1 Анализатор

  • 3.1.2 Функция ввода

  • 3.1.3 Таблица имен

  • Бьерн Страуструп. Язык программирования С Второе дополненное издание


    Скачать 2.87 Mb.
    НазваниеБьерн Страуструп. Язык программирования С Второе дополненное издание
    Дата30.01.2020
    Размер2.87 Mb.
    Формат файлаpdf
    Имя файлаStraustrup-Yazyk_programmirovaniya_c.pdf
    ТипДокументы
    #106559
    страница7 из 35
    1   2   3   4   5   6   7   8   9   10   ...   35
    ГЛАВА 3. ВЫРАЖЕНИЯ И ОПЕРАТОРЫ
    "Но с другой стороны не следует забывать про эффективность"
    (Джон Бентли)
    С++ имеет сравнительно небольшой набор операторов, который позволяет создавать гибкие структуры управления, и богатый набор операций для работы с данными. Основные их возможности показаны в этой главе на одном завершенном примере. Затем приводится сводка выражений, и подробно обсуждаются операции преобразования типа и размещение в свободной памяти. Далее дана сводка операторов, а в конце главы обсуждается выделение текста пробелами и использование комментариев.
    3.1 Калькулятор
    Мы познакомимся с выражениями и операторами на примере программы калькулятора. Калькулятор реализует четыре основных арифметических действия в виде инфиксных операций над числами с плавающей точкой. В качестве упражнения предлагается добавить к калькулятору переменные.
    Допустим, входной поток имеет вид: r=2.5 area=pi*r*r
    (здесь pi имеет предопределенное значение). Тогда программа калькулятора выдаст:
    2.5 19.635
    Результат вычислений для первой входной строки равен 2.5, а результат для второй строки - это
    19.635.
    Программа калькулятора состоит из четырех основных частей: анализатора, функции ввода, таблицы имен и драйвера. По сути – это транслятор в миниатюре, в котором анализатор проводит синтаксический анализ, функция ввода обрабатывает входные данные и проводит лексический анализ, таблица имен хранит постоянную информацию, нужную для работы, а драйвер выполняет инициализацию, вывод результатов и обработку ошибок. К такому калькулятору можно добавить много других полезных возможностей, но программа его и так достаточно велика (200 строк), а введение новых возможностей только увеличит ее объем, не давая дополнительной информации для изучения
    С++.
    3.1.1 Анализатор
    Грамматика языка калькулятора определяется следующими правилами: программа:
    END // END - это конец ввода список-выражений END список-выражений: выражение PRINT // PRINT - это '\n' или ';' выражение PRINT список-выражений выражение: выражение + терм выражение - терм терм терм: терм / первичное терм * первичное первичное

    Бьерн Страуструп.
    Язык программирования С++
    71 первичное:
    NUMBER // число с плавающей запятой в С++
    NAME // имя в языке С++ за исключением '_'
    NAME = выражение
    - первичное
    ( выражение )
    Иными словами, программа есть последовательность строк, а каждая строка содержит одно или несколько выражений, разделенных точкой с запятой. Основные элементы выражения - это числа, имена и операции *, /, +, - (унарный и бинарный минус) и =. Имена необязательно описывать до использования.
    Для синтаксического анализа используется метод, обычно называемый рекурсивным спуском. Это распространенный и достаточно очевидный метод. В таких языках как С++, то есть в которых операция вызова не сопряжена с большими накладными расходами, это метод эффективен.
    Для каждого правила грамматики имеется своя функция, которая вызывает другие функции.
    Терминальные символы (например, END, NUMBER, + и -) распознаются лексическим анализатором get_token(). Нетерминальные символы распознаются функциями синтаксического анализатора expr(), term() и prim(). Как только оба операнда выражения или подвыражения стали известны, оно вычисляется. В настоящем трансляторе в этот момент создаются команды, вычисляющие выражение.
    Анализатор использует для ввода функцию get_token(). Значение последнего вызова get_token() хранится в глобальной переменной curr_tok. Переменная curr_tok принимает значения элементов перечисления token_value: enum token_value {
    NAME, NUMBER, END,
    PLUS='+', MINUS='-', MUL='*', DIV='/',
    PRINT=';', ASSIGN='=', LP='(', RP=')'
    }; token_value curr_tok;
    Для всех функций анализатора предполагается, что get_token() уже была вызвана, и поэтому в curr_tok хранится следующая лексема, подлежащая анализу. Это позволяет анализатору заглядывать на одну лексему вперед. Каждая функция анализатора всегда читает на одну лексему больше, чем нужно для распознавания того правила, для которого она вызывалась. Каждая функция анализатора вычисляет "свое" выражение и возвращает его результат. Функция expr() обрабатывает сложение и вычитание.
    Она состоит из одного цикла, в котором распознанные термы складываются или вычитаются: double expr()
    // складывает и вычитает
    { double left = term(); for(;;)
    //
    ``
    вечно'' switch(curr_tok)
    { case
    PLUS: get_token();
    // случай '+' left
    += term(); break; case
    MINUS: get_token();
    // случай '-' left
    -= term(); break; default: return left;
    }
    }
    Сама по себе эта функция делает немного. Как принято в высокоуровневых функциях больших программ, она выполняет задание, вызывая другие функции. Отметим, что выражения вида 2-3+4 вычисляются как (2-3)+4, что предопределяется правилами грамматики. Непривычная запись for(;;) - это

    Бьерн Страуструп.
    Язык программирования С++
    72 стандартный способ задания бесконечного цикла, и его можно обозначить словом "вечно". Это вырожденная форма оператора for, и альтернативой ей может служить оператор while(1). Оператор switch выполняется повторно до тех пор, пока не перестанут появляться операции + или - , а тогда по умолчанию выполняется оператор return (default).
    Операции += и -= используются для выполнения операций сложения и вычитания. Можно написать эквивалентные присваивания: left=left+term() и left=left-term(). Однако вариант left+=term() и left-=term() не только короче, но и более четко определяет требуемое действие. Для бинарной операции @ выражение x@=y означает x=x@y, за исключением того, что x вычисляется только один раз. Это применимо к бинарным операциям:
    + - * / % & | ^ << >> поэтому возможны следующие операции присваивания:
    += -= *= /= %= &= |= ^= <<= >>=
    Каждая операция является отдельной лексемой, поэтому a + =1 содержит синтаксическую ошибку (из-за пробела между + и =). Расшифровка операций следующая: % - взятие остатка, &, | и ^ - разрядные логические операции И, ИЛИ и Исключающее ИЛИ; << и >> сдвиг влево и сдвиг вправо. Функции term() и get_token() должны быть описаны до определения expr(). В главе 4 рассматривается построение программы в виде совокупности файлов. За одним исключением, все программы калькулятора можно составить так, чтобы в них все объекты описывались только один раз и до их использования.
    Исключением является функция expr(), которая вызывает функцию term(), а она, в свою очередь, вызывает prim(), и уже та, наконец,
    вызывает expr(). Этот цикл необходимо как-то разорвать, для чего вполне подходит заданное до
    определения prim() описание:
    double expr(); // это описание необходимо
    Функция term() справляется с умножением и делением аналогично тому, как функция expr() со сложением и вычитанием: double term()
    // умножает и складывает
    { double left = prim(); for(;;) switch(curr_tok) { case
    MUL: get_token();
    // случай '*' left
    *= prim(); break; case
    DIV: get_token();
    // случай '/' double d
    = prim(); if (d == 0) return error("
    деление на 0"); left
    /= d; break; default: return left;
    }
    }
    Проверка отсутствия деления на нуль необходима, поскольку результат деления на нуль неопределен и, как правило, приводит к катастрофе.
    Функция error() будет рассмотрена позже. Переменная d появляется в программе там, где она действительно нужна, и сразу же инициализируется. Во многих языках описание может находиться только в начале блока. Но такое ограничение может искажать естественную структуру программы и способствовать появлению ошибок. Чаще всего не инициализированные локальные переменные свидетельствуют о плохом стиле программирования. Исключение составляют те переменные, которые инициализируются операторами ввода, и переменные типа массива или структуры, для которых нет традиционной инициализации с помощью одиночных присваиваний. Следует напомнить, что = является

    Бьерн Страуструп.
    Язык программирования С++
    73 операцией присваивания, тогда как == есть операция сравнения.
    Функция prim, обрабатывающая первичное, во многом похожа на функции expr и term(). Но раз мы дошли до низа в иерархии вызовов, то в ней кое-что придется сделать. Цикл для нее не нужен: double number_value; char name_string[256]; double prim() // обрабатывает первичное
    { switch (curr_tok) { case NUMBER: // константа с плавающей точкой get_token(); return number_value; case
    NAME: if (get_token() == ASSIGN) { name* n
    = insert(name_string); get_token(); n->value
    = expr(); return n->value;
    } return look(name_string)->value; case MINUS: // унарный минус get_token(); return
    -prim(); case
    LP: get_token(); double e
    = expr(); if (curr_tok != RP) return error("
    требуется )"); get_token(); return e; case
    END: return
    1; default: return error("требуется первичное");
    }
    }
    Когда появляется NUMBER (то есть константа с плавающей точкой), возвращается ее значение.
    Функция ввода get_token() помещает значение константы в глобальную переменную number_value. Если в программе используются глобальные переменные, то часто это указывает на то, что структура не до конца проработана, и поэтому требуется некоторая оптимизация. Именно так обстоит дело в данном случае. В идеале лексема должна состоять из двух частей: значения, определяющего вид лексемы (в данной программе это token_value), и (если необходимо) собственно значения лексемы. Здесь же имеется только одна простая переменная curr_tok, поэтому для хранения последнего прочитанного значения NUMBER требуется глобальная переменная number_value. Такое решение проходит потому, что калькулятор во всех вычислениях вначале выбирает одно число, а затем считывает другое из входного потока. В качестве упражнения предлагается избавиться от этой излишней глобальной переменной ($$3.5 [15]).
    Если последнее значение NUMBER хранится в глобальной переменной number_value, то строковое представление последнего значения NAME хранится в name_string. Перед тем, как что-либо делать с именем, калькулятор должен заглянуть вперед, чтобы выяснить, будет ли ему присваиваться значение, или же будет только использоваться существующее его значение. В обоих случаях надо обратиться к таблице имен. Эта таблица рассматривается в $$3.1.3; а здесь достаточно только знать, что она состоит из записей, имеющих вид: struct name { char* string; name* next; double value;
    };

    Бьерн Страуструп.
    Язык программирования С++
    74
    Член next используется только служебными функциями, работающими с таблицей: name* look(const char*); name* insert(const char*);
    Обе функции возвращают указатель на ту запись name, которая соответствует их параметру-строке.
    Функция look() "ругается", если имя не было занесено в таблицу. Это означает, что в калькуляторе можно использовать имя без предварительного описания, но в первый раз оно может появиться только в левой части присваивания.
    3.1.2 Функция ввода
    Получение входных данных - часто самая запутанная часть программы. Причина кроется в том, что программа должна взаимодействовать с пользователем, то есть "мириться" с его прихотями, учитывать принятые соглашения и предусматривать кажущиеся редкими ошибки. Попытки заставить человека вести себя более удобным для машины образом, как правило, рассматриваются как неприемлемые, что справедливо. Задача ввода для функции низкого уровня состоит в последовательном считывании символов и составлении из них лексемы, с которой работают уже функции более высокого уровня. В этом примере низкоуровневый ввод делает функция get_token(). К счастью, написание низкоуровневой функции ввода достаточно редкая задача. В хороших системах есть стандартные функции для таких операций.
    Правила ввода для калькулятора были специально выбраны несколько громоздкими для потоковых функций ввода. Незначительные изменения в определениях лексем превратили бы get_token() в обманчиво простую функцию.
    Первая сложность состоит в том, что символ конца строки '\n' важен для калькулятора, но потоковые функции ввода воспринимают его как символ обобщенного пробела. Иначе говоря, для этих функций '\n' имеет значение только как символ, завершающий лексему. Поэтому приходится анализировать все обобщенные пробелы (пробел, табуляция и т.п.). Это делается в операторе do, который эквивалентен оператору while, за исключением того, что тело оператора do всегда выполняется хотя бы один раз: char ch; do { // пропускает пробелы за исключением '\n' if(!cin.get(ch)) return curr_tok = END;
    } while (ch!='\n' && isspace(ch));
    Функция cin.get(ch) читает один символ из стандартного входного потока в ch. Значение условия if(!cin.get(ch)) - ложь, если из потока cin нельзя получить ни одного символа. Тогда возвращается лексема END, чтобы закончить работу калькулятора. Операция ! (NOT) нужна потому, что в случае успешного считывания get() возвращает ненулевое значение.
    Функция-подстановка isspace() из проверяет, не является ли ее параметр обобщенным пробелом ($$10.3.1). Она возвращает ненулевое значение, если является, и нуль в противном случае.
    Проверка реализуется как обращение к таблице, поэтому для скорости лучше вызывать isspace(), чем проверять самому. То же можно сказать о функциях isalpha(), isdigit() и isalnum(), которые используются в get_token().
    После пропуска обобщенных пробелов следующий считанный символ определяет, какой будет начинающаяся с него лексема. Прежде, чем привести всю функцию, рассмотрим некоторые случаи отдельно. Лексемы '\n' и ';', завершающие выражение, обрабатываются следующим образом: switch (ch) { case
    ';': case
    '\n': cin >> ws; // пропуск обобщенного пробела return curr_tok=PRINT;
    Необязательно снова пропускать пробел, но, сделав это, мы избежим повторных вызовов функции get_token(). Переменная ws, описанная в файле , используется только как приемник ненужных пробелов. Ошибка во входных данных, а также конец ввода не будут обнаружены до следующего вызова функции get_token(). Обратите внимание, как несколько меток выбора помечают одну последовательность операторов, заданную для этих вариантов. Для обоих символов ('\n' и ';')

    Бьерн Страуструп.
    Язык программирования С++
    75 возвращается лексема PRINT, и она же помещается в curr_tok.
    Числа обрабатываются следующим образом: case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '.': cin.putback(ch); cin >> number_value; return curr_tok=NUMBER;
    Размещать метки вариантов горизонтально, а не вертикально,- не самый лучший способ, поскольку такой текст труднее читать; но писать строку для каждой цифры утомительно. Поскольку оператор >> может читать константу с плавающей точкой типа double, программа тривиальна: прежде всего начальный символ (цифра или точка) возвращается назад в cin, а затем константу можно считать в number_value. Имя, т.е. лексема NAME, определяется как буква, за которой может идти несколько букв или цифр: if (isalpha(ch)) { char* p = name_string;
    *p++ = ch; while (cin.get(ch) && isalnum(ch)) *p++ = ch; cin.putback(ch);
    *p = 0; return curr_tok=NAME;
    }
    Этот фрагмент программы заносит в name_string строку, оканчивающуюся нулевым символом. Функции isalpha() и isalnum() определены в . Результат isalnum(c) ненулевой, если c - буква или цифра, и нулевой в противном случае.
    Приведем, наконец, функцию ввода полностью: token_value get_token()
    { char ch; do { // пропускает обобщенные пробелы за исключением '\n' if(!cin.get(ch)) return curr_tok = END;
    } while (ch!='\n' && isspace(ch)); switch (ch) { case
    ';': case
    '\n': cin
    >> ws;
    // пропуск обобщенного пробела return curr_tok=PRINT; case
    '*': case
    '/': case
    '+': case
    '-': case
    '(': case
    ')': case
    '=': return curr_tok=token_value(ch); case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':

    Бьерн Страуструп.
    Язык программирования С++
    76 case
    '.': cin.putback(ch); cin
    >> number_value; return curr_tok=NUMBER; default:
    //
    NAME,
    NAME= или ошибка if
    (isalpha(ch))
    { char* p
    = name_string;
    *p++
    = ch; while (cin.get(ch) && isalnum(ch)) *p++ = ch; cin.putback(ch);
    *p
    =
    0; return curr_tok=NAME;
    } error("недопустимая лексема"); return curr_tok=PRINT;
    }
    }
    Преобразование операции в значение лексемы для нее тривиально, поскольку в перечислении token_value лексема операции была определена как целое (код символа операции).
    3.1.3 Таблица имен
    Есть функция поиска в таблице имен: name* look(char* p, int ins =0);
    Второй ее параметр показывает, была ли символьная строка, обозначающая имя, ранее занесена в таблицу. Инициализатор =0 задает стандартное значение параметра, которое используется, если функция look() вызывается только с одним параметром. Это удобно, так как можно писать look("sqrt2"), что означает look("sqrt2",0), т.е. поиск, а не занесение в таблицу. Чтобы было так же удобно задавать операцию занесения в таблицу, определяется вторая функция: inline name* insert(const char* s) { return look(s,1); }
    Как ранее упоминалось, записи в этой таблице имеют такой тип: struct name { char* string; name* next; double value;
    };
    Член next используется для связи записей в таблице. Собственно таблица - это просто массив указателей на объекты типа name: const TBLSZ = 23; name* table[TBLSZ];
    Поскольку по умолчанию все статические объекты инициализируются нулем, такое тривиальное описание таблицы table обеспечивает также и нужную инициализацию.
    Для поиска имени в таблице функция look() использует простой хэш-код (записи, в которых имена имеют одинаковый хэш-код, связываются вместе): int ii = 0; // хэш-код const char* pp = p; while (*pp) ii = ii<<1 ^ *pp++; if (ii < 0) ii = -ii; ii %= TBLSZ;
    Иными словами, с помощью операции ^ ("исключающее ИЛИ") все символы входной строки p поочередно добавляются к ii. Разряд в результате x^y равен 1 тогда и только тогда, когда эти разряды в операндах x и y различны. До выполнения операции ^ значение ii сдвигается на один разряд влево,

    Бьерн Страуструп.
    Язык программирования С++
    77 чтобы использовался не только один байт ii. Эти действия можно записать таким образом: ii <<= 1; ii ^= *pp++;
    Для хорошего хэш-кода лучше использовать операцию ^, чем +. Операция сдвига важна для получения приемлемого хэш-кода в обоих случаях. Операторы if (ii < 0) ii = -ii; ii %= TBLSZ; гарантируют, что значение ii будет из диапазона 0...TBLSZ-1. Напомним, что % - это операция взятия остатка. Ниже полностью приведена функция look:
    #include name* look(const char* p, int ins =0)
    { int ii = 0; // хэш-код const char* pp = p; while (*pp) ii = ii<<1 ^ *pp++; if (ii < 0) ii = -ii; ii %= TBLSZ; for (name* n=table[ii]; n; n=n->next) // поиск if (strcmp(p,n->string) == 0) return n; if (ins == 0) error("
    имя не найдено"); name* nn = new name; // занесение nn->string = new char[strlen(p)+1]; strcpy(nn->string,p); nn->value = 1; nn->next = table[ii]; table[ii] = nn; return nn;
    }
    После вычисления хэш-кода ii идет простой поиск имени по членам next. Имена сравниваются с помощью стандартной функции сравнения строк strcmp(). Если имя найдено, то возвращается указатель на содержащую его запись, а в противном случае заводится новая запись с этим именем.
    Добавление нового имени означает создание нового объекта name в свободной памяти с помощью операции new (см. $$3.2.6), его инициализацию и включение в список имен. Последнее выполняется как занесение нового имени в начало списка, поскольку это можно сделать даже без проверки того, есть ли список вообще. Символьная строка имени также размещается в свободной памяти. Функция strlen() указывает, сколько памяти нужно для строки, операция new отводит нужную память, а функция strcpy() копирует в нее строку. Все строковые функции описаны в : extern int strlen(const char*); extern int strcmp(const char*, const char*); extern char* strcpy(char*, const char*);
    1   2   3   4   5   6   7   8   9   10   ...   35


    написать администратору сайта