Главная страница
Навигация по странице:

  • СТРОЕНИЕ ВСЕЛЕННОЙ.

  • ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

  • РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ.

  • Модель «горячей Вселенной

  • БУДУЩЕЕ ВСЕЛЕННОЙ

  • «большое сжатие»

  • «тепловая смерть Вселенной»

  • «большого разрыва»

  • ЗАКЛЮЧЕНИЕ

  • строение вселенной. Реферат по астрономии. Доклад на тему строение


    Скачать 370.17 Kb.
    НазваниеДоклад на тему строение
    Анкорстроение вселенной
    Дата20.02.2022
    Размер370.17 Kb.
    Формат файлаdocx
    Имя файлаРеферат по астрономии.docx
    ТипДоклад
    #368073


    ДОКЛАД

    на тему:

    СТРОЕНИЕ

    И

    ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

    2018 год

    СОДЕРЖАНИЕ:

    1. ВВЕДЕНИЕ

    3


    II. СТРОЕНИЕ ВСЕЛЕННОЙ


    4


    2.1. ГАЛАКТИКИ.


    6


    III. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ


    7


    3.1. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ


    10


    3.2. МОДЕЛЬ «ГОРЯЧЕЙ ВСЕЛЕННОЙ»


    11


    IV. БУДУЩЕЕ ВСЕЛЕННОЙ


    12


    V. ЗАКЛЮЧЕНИЕ


    14


    ССЫЛКИ НА ИСПОЛЬЗОВАННЫЕ МАТЕРИАЛЫ:


    16



    1. ВВЕДЕНИЕ.

    С ранних времен человек задумывался об устройстве окружающего его мира как единого целого. И в каждой культуре оно понималось и представлялось по-разному. Так, в Вавилоне жизнь на Земле тесно связывали с движением звезд, а в Китае идеи гармонии переносились на всю Вселенную.

    Развитие этих представлений в разных частях света шло по-разному. Но если в Старом Свете накопленные знания и представления в целом никуда не исчезли, лишь передаваясь от одной цивилизации к другой, то о Новом Свете такого сказать нельзя. Виной тому — колонизация Америки европейцами, уничтожавшая многие памятники древних культур.

    В период Средневековья представление о мире как о едином целом не претерпевает существенных изменений. И тому две причины. Первая — сильное давление ортодоксальных богословов, характерное как для католической Европы, так и для исламского мира. Вторая — наследие прошлого, когда представления о мире строились из неких философских концепций. Необходимо было осознать, что астрономия являлась частью физики.

    Первый значительный толчок в сторону современных представлений о Вселенной совершил Коперник. Второй по величине вклад внесли Кеплер и Ньютон. Но поистине революционные изменения в наших представлениях о Вселенной происходят лишь в XX веке. Даже в начале его некоторые учёные считали, что Млечный Путь — вся Вселенная.

    В конце XVII начале XVIII веков знания астрономии о космосе ограничивались Солнечной системой. Не было известно о том, что собой представляют звезды, как они распределены в космическом пространстве, сколько составляет расстояние между ними. Возможность более детального изучения устройства Вселенной с использованием более мощных телескопов, связывают с деятельностью, проводимой в данном направлении английским астрономом Уильямом Гершелем. Фридрих Уильям Гершель родился в Ганновере 15 ноября 1738 года. Астрономические открытия Гершеля:

    • планета Уран 13 марта 1781 г.

    • спутники Сатурна Мимас и Энцелад в 1789 г.

    • спутники Урана Титания и Оберон.

    • Ввел термин «астероид».

    • Определил движение Солнечной системы в сторону созвездия Геркулеса.

    • Открыл инфракрасное излучение.

    • Установил, что галактики собраны в огромные «пласты», среди которых выделил сверхскопление в созвездии Волосы Вероники.

    • Первым высказал идею космической эволюции под действием гравитации.

    В современном научном понимании Вселенная – обычно определяется как совокупность всего, что существует физически: пространства и времени, всех форм материи, физических законов и констант, которые управляют ими. В глобальном смысле можно считать, что внутри Вселенной (возможно и не одной) находится Космос, который рассматривают как космическое пространство огромной величины, включающее в себя межпланетное, межзвездное, межгалактическое пространство со всеми находящимися в нем объектами.

    Наука, изучающая строение и эволюцию Вселенной, называется космологией (от греческих слов космос — мир, Вселенная и логос — учение).

    Большое значение для развития современных представлений о строении и развитии Вселенной имеет общая теория относительности, созданная А. Эйнштейном (1879— 1955). Она обобщает теорию тяготения Ньютона на большие массы вещества и скорости его движения, сравнимые со скоростью света.

    Действительно, в галактиках1 сосредоточена колоссальная масса вещества, а скорости далеких галактик и квазаров2 сравнимы со скоростью света. Согласно общей теории относительности, гравитационное взаимодействие передается с конечной скоростью, равной скорости света. (В теории Ньютона считается, что гравитационное взаимодействие передается мгновенно.)

    Общая теория относительности накладывает определенные ограничения на геометрические свойства пространства, которое уже нельзя считать евклидовым. Согласно этой теории, движение и распределение материи в пространстве нельзя рассматривать в отрыве от геометрических свойств пространства и времени.


    1. СТРОЕНИЕ ВСЕЛЕННОЙ.

    Вселенная представляет собой расширяющееся пространство, заполненное губкообразной клочковатой структурой, стенки которой представляют собой скопления миллиардов галактик с сотнями миллиардов звезд3 внутри каждой, обращающихся вокруг центрального ядра. Считается, что большинство звезд являются кратными и представляют собой центры планетарных систем из нескольких планет, с расстояниями между телами в десятки и сотни астрономических единиц (десятки миллиардов километров). Однако до сегодняшних дней представления о форме и размерах Вселенной в науке являются остродискуссионными.

    Единой точки зрения, является ли Вселенная действительно бесконечной или конечной в пространстве и объеме, не существует. Но наблюдаемая Вселенная, включающая все местоположения, которые могут воздействовать на нас с момента Большого взрыва, конечна, поскольку конечна скорость света. Границей космического светового горизонта является расстояние 24 Гигапарсека. Действительное расстояние до границы наблюдаемой Вселенной больше, благодаря всё увеличивающейся скорости расширения Вселенной, и оценивается в 93 миллиарда световых лет.

    Химический состав Вселенной по общим подсчетам включает: H - 75%; He - 23%; O - 1%; C - 0,5%. Средняя температура – 2,725 К. Средняя плотность вещества, сосредоточенная в виде звезд в галактиках, равна приблизительно 2 • 10-30 кг/см3.

    Радиус Вселенной легко оценить с помощью закона Хаббла. Так как максимальная скорость не может превышать скорости света, то максимальное расстояние R, до которого мы можем наблюдать небесные тела, соответствует скорости разбегания галактик

    ν = с = 3 • 105 км/с, откуда

    или R = 1,24 • 1026 м.

    Если наблюдения пока не позволяют нам с определенностью сказать о характере будущего расширения Вселенной, то оценить, когда в прошлом это расширение началось, можно с помощью закона Хаббла. Действительно, если наблюдаемая нами галактика удаляется со скоростью ν и сейчас после «начала» расширения находится на расстоянии r от Земли, то свое удаление она начала в момент



    Эти рассуждения применимы для любой галактики. Таким образом, около 13 млрд лет назад все вещество метагалактики было сосредоточено в небольшом объеме и плотность вещества была настолько высокой, что ни галактик, ни звезд не существовало.

    Пока не ясны ни физические процессы, протекавшие до этого сверхплотного состояния вещества, ни причины, вызвавшие расширение Вселенной. Ясно одно, что со временем расширение привело к значительному уменьшению плотности вещества и на определенном этапе расширения стали формироваться галактики и звезды. Некоторые видят в наблюдаемом разбегании галактик аналогию с разлетом вещества во время взрыва, поэтому описанная теория расширения Вселенной получила название теории Большого взрыва, а время (13 млрд лет), прошедшее с начала этого взрыва, называют возрастом Вселенной.


      1. ГАЛАКТИКИ.

    Галактикой называется огромная система из звезд, межзвездного газа, пыли, темной материи и, возможно, темной энергии, связанная силами гравитационного взаимодействия. Метагалактика – изученная часть Вселенной со всеми находящимися в ней объектами. Предположительно, в видимой части Вселенной находится около 100 млрд. галактик, из них изучено около 200. Галактики содержат от миллионов до нескольких триллионов (1000000000000) звезд, а также туманности. Размеры галактик от тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет. Для обозначения огромных расстояний введены такие величины как – парсек (пк), световой год (св.г.), астрономическая единица (а.е.).

    Кроме того, все космические системы вращаются вокруг своей оси и относительно друг друга по сложным орбитам с периодами в сотни миллионов лет и под определенными углами наклона.

    Около 90% массы галактик приходится на долю темной материи 4и энергии5. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные черные дыры6. Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше 1 атома на 1 м3 – вакуум.

    Возраст галактик равен примерно возрасту Вселенной, около 13 млрд. лет назад в первичном веществе началось обособление протоскоплений,7 в которых, в ходе разнообразных динамических процессов, происходило выделение групп галактик. Сжатие галактики длится около 3 млрд. лет. За это время происходит превращение газового облака в звездную систему.

    В 1936 г. Эдвином Хабблом предложена морфологическая классификация галактик, названая последовательность Хаббла или Камертон Хаббла, поскольку иллюстрация имеет сходство с этим инструментом. Хаббл разделил все галактики на 3 класса, основываясь на их внешнем виде, но впоследствии открыли и другие виды. Современная классификация галактик: эллиптические (Е), линзообразные(S0), обычные спиральные(S), пересеченные спиральные(SB), неправильные (Ir), класс больших спиральных звездных систем. Выделяют активные «взрывающиеся», Сейфертовские галактики, квазары.


    1. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ


    Процесс эволюции Вселенной происходит очень медленно.

    Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом. Момент, с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и полная драматизма эра в истории вселенной, ее называют “большим взрывом”.

    Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время -- около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.

    Теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.

    Э волюцию Вселенной принято разделять на четыре эры:

    • адронную,

    • лептонную,

    • фотонную

    • звездную.

    Адронная эра. Первая эра называется адронной по имени тяжелых частиц. Состав Вселенной в начале этой эры очень сложный и представлен частицами столь высоких энергий, что экспериментально они еще не обнаружены. Характерной особенностью адронной эры является сосуществование частиц и античастиц, т.е. вещества и антивещества. Частицы и античастицы аннигилируют и возникают вновь, распадаются и рождаются в результате взаимодействий. Аннигиляция пары «частица-античастица» означает превращение их в излучение. Это свет, рентгеновские или гамма-лучи. При громадных энергиях, процессах аннигиляции8 и рождения частиц, материю в адронную эру можно охарактеризовать как некую адронную плазму, представляющую бесформенную, довольно однородную смесь частиц, античастиц и излучения.

    Лептонная эра. Когда энергия частиц и фотонов понизилась в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

    Лептонная эра начинается с распада адронов в мюоны9 и мюонное нейтрино, а кончается через несколько секунд при температуре 1010 K, когда энергия фотонов уменьшилась до 1 Мэв10 и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

    Фотонная эра или эра излучения. Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко - альфа-частицы. В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течение эры излучения гамма-фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что к каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

    Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Кончается эра излучения и вместе с этим период “большого взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет.

    “Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. В столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

    Звездная эра. После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” до наших дней. По сравнению с периодом “большого взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

    Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик.

    Эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной.


      1. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ.

    Впервые космологическую модель Вселенной в рамках общей теории относительности рассмотрел советский математик А. Фридман. Он показал, что Вселенная, однородно заполненная веществом, должна быть нестационарной, и исходя из этого объяснил наблюдаемую картину разбегания галактик. Он показал, что в зависимости от средней плотности вещества Вселенная должна либо расширяться, либо сжиматься. При расширении Вселенной скорость разбегания галактик должна быть пропорциональна расстоянию до них — вывод, который подтвердил Хаббл открытием красного смещения в спектрах галактик. Критическое значение плотности вещества, от которой зависит характер его движения:



    где G — гравитационная постоянная, а Н — постоянная Хаббла11.

    Помня, что 1 пк = 3,08 • 1013 км и поэтому 1 Мпк = = 3,08 • 1019 км, найдем Н = 2,4 • 10-18 с-1. Тогда критическая плотность вещества:



    ρкр = 10-29 г/см3.

    Если средняя плотность Вселенной больше критической (ρ > ρкр) то в будущем расширение Вселенной сменится сжатием, а при средней плотности, равной или меньшей критической (ρ ≤ ρкр), расширение не прекратится.

    Средняя плотность вещества, сосредоточенная в виде звезд в галактиках, равна приблизительно 2 • 10-33 г/см3, что почти в 5000 раз меньше критической.

    Но делать выводы о бесконечном расширении Вселенной пока преждевременно, так как некоторые астрономы высказывают предположение о существовании в галактиках вещества, которое пока еще не обнаружено. Эта «скрытая масса» может изменить оценку принятой сейчас средней плотности вещества во Вселенной. Поэтому точного ответа на вопрос о будущем Вселенной в настоящее время не имеется.


      1. Модель «горячей Вселенной»

    В 1968 г. было обнаружено излучение, которое не связано ни с одним известным источником радиоизлучения. Оно идет со всех сторон и похоже на излучение абсолютно черного тела. Это микроволновое излучение имеет максимум на длине волны λmax = 1 мм, что, согласно закону смещения Вина, соответствует температуре излучения 2,7 К. В прошлом, на ранних этапах эволюции Вселенной, плотность и температура этого излучения были существенно выше.

    Таким образом, в прошлом не только плотность, но и температура вещества были очень высокими. Так, например, когда возраст Вселенной был всего несколько секунд, температура вещества и излучения была десятки и сотни миллионов кельвинов.

    Конечно, ни о каких галактиках и звездах в этот период говорить не приходится. Они образовались значительно позднее, когда температура и плотность вещества стали ниже. Так как наблюдаемое микроволновое излучение с температурой 2,7 К связано с горячим веществом на ранних этапах эволюции Вселенной, то излучение получило название реликтового (оставшегося от прошлых эпох), а модель расширяющейся Вселенной называют моделью «горячей Вселенной».


    1. БУДУЩЕЕ ВСЕЛЕННОЙ


    Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

    Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.

    Первый сценарий получил название «большое сжатие». Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения, Вселенная начнет сжиматься. Если расширение Вселенной замедляется, то в будущем оно прекратится и начнётся сжатие. Эволюция и облик Вселенной будут определяться космологическими эпохами до того момента, пока её радиус не станет в пять раз меньше современного. Тогда все скопления во Вселенной образуют единое мегаскопление, однако галактики не потеряют свою индивидуальность: в них всё также будет происходить рождение звёзд, будут вспыхивать сверхновые и, возможно, будет развиваться биологическая жизнь. Всему этому придёт конец, когда Вселенная сожмётся ещё в 20 раз и станет в 100 раз меньше, чем сейчас; в тот момент Вселенная будет представлять собой одну огромную галактику. Температура реликтового фона достигнет 274 К, и на планетах земного типа начнёт таять лёд. Дальнейшее сжатие приведёт к тому, что излучение реликтового фона затмит даже излучения центральных светил в планетных системах, выжигая на планетах последние ростки жизни. А вскоре после этого испарятся или будут разорваны на куски сами звёзды и планеты. Состояние Вселенной будет похоже на то, что было в первые моменты её зарождения. Дальнейшие события будут напоминать те, что происходили в начале, но промотанные в обратном порядке: атомы распадаются на атомные ядра и электроны, начинает доминировать излучение, потом начинают распадаться атомные ядра на протоны и нейтроны, затем распадаются и сами протоны и нейтроны на отдельные кварки, происходит великое объединение. В этот момент, как и в момент Большого взрыва, перестают работать известные нам законы физики, и дальнейшую судьбу Вселенной предсказать невозможно.

    Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов12, нейтронные звезды 13и черные дыры.

    Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга14. В конце концов термодинамическая энтропия 15во Вселенной станет максимальной. Наступит тепловая смерть.

    Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.

    Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.

    Если скорость будет всё нарастать, то, начиная с определённого момента, сила, расширяющая Вселенную, сначала превысит гравитационные силы, удерживающие галактики в скоплениях. За ними распадутся галактики и звёздные скопления. И, наконец, последними распадутся наиболее тесно связанные звёздные системы. Спустя некоторое время электромагнитные силы не смогут удерживать от распада планеты и более мелкие объекты. Мир вновь будет существовать в виде отдельных атомов. На следующем этапе распадутся и отдельные атомы. Что последует за этим, точно сказать невозможно: на этом этапе перестаёт работать современная физика. Это сценарий Большого разрыва.


    1. ЗАКЛЮЧЕНИЕ

    Открытие многообразных процессов эволюции в различных системах и телах, составляющих Вселенную, позволило изучить закономерности космической эволюции на основе наблюдательных данных и теоретических расчетов.

    В качестве одной из важнейших задач является определение возраста космических объектов и их систем. Поскольку в большинстве случаев трудно решить, что нужно считать и понимать под «моментом рождения» тела или системы, то, для установления возраста применяют два параметра:

    - время, в течение которого система уже находится в наблюдаемом состоянии;

    - полное время жизни данной системы от момента её появления.

    Очевидно, что вторая характеристика может быть получена только на основе теоретических расчетов.

    Обычно первую величину называют возрастом, а вторую - временем жизни.

    Факт взаимного удаления галактик, составляющих метагалактики свидетельствует о том, что некоторое время тому назад она находилась в качественно ином состоянии и была более плотной. Наиболее вероятное значение постоянной Хаббла (коэффициента пропорциональности, связывающего скорости удаления внегалактических объектов и расстояние до них составляющее 60 км/сек - мегапарсек), приводит к значению времени расширения метагалактики до современного состояния 17 млрд. лет.

    Из всех вышеперечисленных доказательств можно с уверенностью сделать вывод: Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

    Наши дни полны замечательными и чаще всего неожиданными открытиями в мире звезд. Солнечная система стала последнее время предметом прямых экспериментальных, а не только наблюдательных исследований.

    Полеты межпланетных космических станций, орбитальных лабораторий, экспедиции на Луну принесли множество новых конкретных знаний о Земле, околоземном пространстве, планетах, Солнце. Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро претворяются в жизнь. С давних пор люди мечтали разгадать тайны Галактик, разбросанных в беспредельных просторах Вселенной.

    В настоящее время наука быстро выдвигает различные гипотезы и тут же их опровергает. Однако астрономия не стоит на месте: появляются новые способы наблюдения, модернизируются старые. С изобретением радиотелескопов, например, астрономы могут «заглянуть» на расстояния, которые еще в 40-x годах ХХ столетия казались недоступными. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми еще предстоит встретиться на пути к звездам.

    Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

    Не будет ошибкой сказать, что любая наука, так или иначе, изучает Вселенную, точнее, те или иные её стороны. Химия изучает мир молекул, физика - мир атомов и элементарных частиц, биология - явления живой природы. Чем больше открытий сделано в разных областях науки, тем ближе становится разгадка тайн Вселенной.

    ССЫЛКИ НА ИСПОЛЬЗОВАННЫЕ МАТЕРИАЛЫ:
    https://ru.wikipedia.org/wiki/Постоянная_Хаббла

    http://fb.ru/article/51943/kak-proishodila-evolyutsiya-vselennoy

    https://studwood.ru/512354/prochie_distsipliny/rasshiryayuschayasya_vselennaya

    https://ru.wikipedia.org/wiki/Крупномасштабная_структура_Вселенной

    https://infopedia.su/5x269c.html

    https://ru.wikipedia.org/wiki/История_развития_представлений_о_Вселенной

    https://ru.wikipedia.org/wiki/Вселенная

    https://ru.wikipedia.org/wiki/Будущее_Вселенной

    https://ru.wikipedia.org/wiki/Большое_сжатие

    https://ru.wikipedia.org/wiki/Большой_разрыв

    https://ru.wikipedia.org/wiki/Вселенная_Фридмана

    https://ru.wikipedia.org/wiki/Закон_Хаббла

    https://www.popmech.ru/science/13056-chto-takoe-kosmicheskiy-gorizont/

    https://ru.wikipedia.org/wiki/Тепловая_смерть_Вселенной

    http://pages.uoregon.edu/jimbrau/BrauImNew/Chap24/6th/24_09Figure-F.jpg

    https://ru.wikipedia.org/wiki/Астрономическая_единица

    https://ru.wikipedia.org/wiki/Кратная_звезда

    https://lektsia.com/2x4389.html

    http://class-fizika.ru/11_a10.html


    1 Галактика — гравитационно-связанная система из звезд и звездных скоплений, межзвездного газа и пыли, и темной материи. Все объекты в составе галактики участвуют в движении относительно общего центра масс

    2 Кваза́р — класс астрономических объектов, один из самых ярких в видимой Вселенной — его мощность излучения иногда в десятки и сотни раз превышает суммарную мощность всех звёзд таких галактик, как наша.

    3 Звезда — массивный газовый шар, излучающий свет и удерживаемый силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза

    4 Темная материя — гипотетическая форма материи, которая не испускает электромагнитного излучения и напрямую не взаимодействует с ним

    5 Тёмная эне́ргия (англ. dark energy) в космологии — гипотетический вид энергии, введённый в математическую модель Вселенной ради объяснения наблюдаемого её расширения с ускорением

    6 Чёрная дыра — область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. Граница этой области называется горизонтом событий, а её характерный размер — гравитационным радиусом.

    7 Протоскопление - турбулентный слой. Картина сверхзвуковых движений метагалактической среды в эпоху формирования галактик складывается из множества разнообразных и сложных гидродинамических процессов. Она включает в себя не только формирование крупномасштабных сгущений — облаков, но и взаимодействие этих облаков друг с другом.

    8 Аннигиля́ция — в физике реакция превращения частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изученной является аннигиляция электрон-позитронной пары.

    9 Мюо́н в стандартной модели физики элементарных частиц — неустойчивая элементарная частица с отрицательным электрическим зарядом.

    10 Мегаэлектронвольт (англ. megaelectronvolt ) МэВ — это внесистемная единица измерения энергии кратная электронвольту.

    11 Постоя́нная Ха́ббла (конста́нта Ха́ббла) — коэффициент, входящий в закон Хаббла, который связывает расстояние до внегалактического объекта (галактики, квазара) со скоростью его удаления. Обычно обозначается буквой H. Имеет размерность, обратную времени (H ≈ 2,2·10−18 с−1), но выражается обычно в км/с на мегапарсек.

    12 Бе́лые ка́рлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии.

    13 Нейтро́нная звезда́ — космическое тело, являющееся одним из возможных результатов эволюции звёзд, состоящее, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров.

    14 Излуче́ние Хо́кинга — гипотетический процесс излучения чёрной дырой разнообразных элементарных частиц, преимущественно фотонов; назван в честь Стивена Хокинга.

    15 Термодинамическая энтропия, часто именуемая просто энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций)


    написать администратору сайта