Главная страница

3.Доклад по Икт. Доклад по информатике " Шифрование " Подготовила Лапченко Алёна


Скачать 40.81 Kb.
НазваниеДоклад по информатике " Шифрование " Подготовила Лапченко Алёна
Дата11.06.2021
Размер40.81 Kb.
Формат файлаdocx
Имя файла3.Доклад по Икт.docx
ТипДоклад
#216670
страница2 из 3
1   2   3

1.Симметричные криптосистемы


1.1. Классификация крип­то­гра­фи­че­ских ме­то­дов

Все мно­го­об­ра­зие су­ще­ст­вую­щих крип­то­гра­фи­че­ских ме­то­дов мож­но све­сти к сле­дующим клас­сам пре­об­ра­зо­ва­ний:

Многоалфавитная подстановка - н аи­бо­лее про­стой вид пре­об­ра­зо­ва­ний, за­клю­чаю­щий­ся в за­ме­не сим­во­лов ис­ход­но­го тек­ста на другие (того же алфавита) по бо­лее или ме­нее слож­но­му пра­ви­лу. Для обес­пе­че­ния вы­со­кой крип­то­стой­ко­сти тре­бу­ет­ся ис­поль­зо­ва­ние боль­ших клю­чей.

Пе­ре­ста­нов­ки - не­слож­ный ме­тод крип­то­гра­фи­че­ско­го пре­об­ра­зо­ва­ния. Ис­поль­зу­ет­ся как пра­ви­ло в со­че­та­нии с дру­ги­ми ме­то­да­ми.

Гам­ми­ро­ва­ние - э тот ме­тод за­клю­ча­ет­ся в на­ло­же­нии на ис­ход­ный текст не­ко­то­рой псев­до­слу­чай­ной по­сле­до­ва­тель­но­сти, ге­не­ри­руе­мой на ос­но­ве клю­ча.

Блочные шифры со­бой по­сле­до­ва­тель­ность (с воз­мож­ным по­вто­ре­ни­ем и че­ре­до­ва­ни­ем) ос­нов­ных ме­то­дов пре­об­ра­зо­ва­ния, при­ме­няе­мую к блоку (части) шиф­руе­мого­ тек­ста. Блочные шифры на прак­ти­ке встре­ча­ют­ся ча­ще, чем “чис­тые” пре­об­ра­зо­ва­ния то­го или ино­го клас­са в си­лу их бо­лее вы­со­кой крип­то­стой­ко­сти. Рос­сий­ский и аме­ри­кан­ский стан­дар­ты шиф­ро­ва­ния ос­но­ва­ны имен­но на этом классе шифров.

Перестановкой s набора целых чисел (0,1,...,N-1) называется его переупорядочение. Для того чтобы показать, что целое i пере­мещено из позиции i в позицию s(i), где 0 £(i) < n , будем использовать запись

s=(s(0), s(1),..., s(N-1)).

Число перестановок из (0,1,...,N-1) равно n !=1*2*...*(N-1)*N. Введем обозначение s для взаимно-однозначного отображения (гомо­морфизма) набора S={s 0 ,s 1 ,...,s N-1 }, состоящего из n элементов, на себя.

s: S ® S

s: s i ®s s (i) , 0 £ i < n

Будем говорить, что вэтом смысле s является перестановкой элементов S. И, наоборот, автоморфизм S соответствует пере­становке целых чисел (0,1,2,.., n -1).

Криптографическим преобразованием T для алфавита Zm называется последовательность автоморфизмов: T={T(n) :1£n<¥}

T(n) : Zm,n ®Zm,n , 1£n<¥

Каждое T(n) является, таким образом, перестановкой n -грамм из Zm,n .

Поскольку T(i) и T(j) могут быть определены независимо при i¹j, число криптографических преобразований исходного текста размерности n равно (mn )![1] . Оно возрастает непропорционально при увеличении m и n : так, при m =33и n =2 число различных криптографических преобразований равно 1089!. Отсюда следует, что потенциально существует большое число отображений исходного текста в шифрованный.

Практическая реализация криптогра­фических систем требует, чтобы преобразо­вания {Tk : k ÎK } были определены алгоритмами, зависящими от относительно небольшого числа параметров (ключей).

1.2. Сис­те­мы под­ста­но­вок

Определение Подстановкой p на алфавите Zm называется автоморфизм Zm , при котором буквы исходного текста t замещены буквами шифрованного текста p(t):

Zm - Zm ; p: t -p(t).

Набор всех подстановок называется симметрической группой Zm è будет в дальнейшем обозначаться как SYM(Zm ).

Утверждение SYM(Zm ) c операцией произведения является группой, т.е. операцией, обладающей следующими свойствами:

Замкнутость : произведение подстановок p1 p2 является подста­новкой:

p: t-p1 (p2 (t)).

Ассоциативность : результат произведения p1 p2 p3 не зависит от порядка расстановки скобок:

(p1 p2 )p3 =p1 (p2 p3 )

Существование нейтрального элемента : постановка i, опре­деляемая как i(t)=t, 0£tm ) по операции умножения: ip=pi для "pÎSYM(Zm ).

Существование обратного
: для любой подстановки p существует единственная обратная подстановка p-1 , удовлетворя­ющая условию

pp‑1 =p‑1 p=i.

Число возможных подстановок в симметрической группе Zm называется порядком SYM(Zm ) и равно m ! .

Определение. Ключом подстановки k для Zm называется последовательность элементов симметрической группы Zm :

k =(p 0 ,p 1 ,...,p n -1 ,...), p n ÎSYM(Zm ), 0£n<¥

Подстановка, определяемая ключом k , является крипто­гра­фи­ческим преобразованием Tk , при помощи которого осуществляется преоб­разование n -граммы исходного текста (x0 ,x1 ,..,xn-1 ) в n -грамму шифрованного текста (y0 ,y1 ,...,yn-1 ):

yi =p (xi ), 0£i

где n
– произвольное (n=1,2,..). Tk называется моноалфавитной под­ста­новкой, если p неизменно при любом i, i=0,1,..., в противном случае Tk называется многоалфавитной подстановкой.

Примечание . К наиболее существенным особенностям подста­новки Tk относятся следующие:

1. Исходный текст шифруется посимвольно . Шифрования n -граммы (x0 ,x1 ,..,xn-1 ) и ее префикса (x0 ,x1 ,..,xs -1 ) связаны соотношениями

Tk (x0 ,x1 ,..,xn-1 )=(y0 ,y1 ,...,yn-1 )

Tk (x0 ,x1 ,..,xs -1 )=(y0 ,y1 ,...,ys -1 )

2. Буква шифрованного текста yi является функцией только i-й компоненты ключа pi и i-й буквы исходного текста x i .

1.3. Подстановка Цезаря

Подстановка Цезаря является самым простым вариантом подстановки. Она относится к группе моноалфавитных подстановок .

Определение . Подмножество Cm ={Ck : 0£k m ), содержащее m подстановок

Ck : j®(j+k ) (mod m ), 0£k < m ,

называется подстановкой Цезаря.

Умножение коммутативно, Ck Cj =Cj Ck =Cj+k , C0 – идентичная подстановка, а обратной к Cк является Ck -1 =Cm-k , где 0<k 3 .

Подстановка определяется по таблице замещения, содержащей пары соответствующих букв “исходный текст – шифрованный текст”. Для C3 подстановки приведены в Табл. 1. Стрелка (-) означает, что буква исходного текста (слева) шифруется при помощи C3 в букву шифрованного текста (справа).

Определение
. Системой Цезаря называется моноалфа­витная подстановка, преобразующая n -грамму исходного текста (x0 , x 1 ,..,xn-1 ) в n ‑грамму шифрованного текста (y0 ,y1 ,...,yn-1 ) в соответствии с правилом

yi =Ck (xi ), 0£i

Например, ВЫШЛИТЕ_НОВЫЕ_УКАЗАНИЯ посредством подстановки C3 преобразуется в еюыолхиврсеюивцнгкгрлб.

А-г

Й-м

Т-х

Ы-ю

Б-д

К-н

У-ц

Ь-я

В-е

Л-о

Ф-ч

Э-_

Г-ж

М-п

Х-ш

Ю-а

Д-з

Н-р

Ц-щ

Я-б

Е-и

О-с

Ч-ъ

_-в

Ж-й

П-т

Ш-ы




З-к

Р-у

Щ-ь




И-л

С-ф

Ъ-э




Таблица 1.1: Применение подстановки Цезвря.

При своей несложности система легко уязвима. Если злоумышленник имеет

1) шифрованный и соответ­ствующий исходный текст или

2) шифрованный текст выбранного злоумыш­ленником исходного текста,

то определение ключа и дешифрование исходного текста тривиальны.

Более эффективны обобщения подстановки Цезаря - шифр Хилла
и шифр Плэйфера . Они основаны на подстановке не отдельных символов, а 2-грамм (шифр Плэйфера) или n -грамм[2] (шифр Хилла). При более высокой криптостойкости они значительно сложнее для реализации и требуют достаточно большого количества ключевой информации.

1.4.Многоалфавитные системы. Системы одноразового использования

Слабая криптостойкость моноалфавитных подстановок преодолевается с применением подстановок многоалфавитных.

Многоалфавитная подстановка определяется ключом p=(p1 ,
p2 , ...), содержащим не менее двух различных подстановок. В начале рассмотрим многоалфавитные системы подстановок с нулевым начальным смещением.Пусть {K i : 0£i

принимающие значения на множестве Zm

P
кл{(K 0 , K 1 , ..., K n-1 )=(k 0 , k 1 , ..., k n-1 )}=(1/m)n

Система одноразового использования преобразует исходный текст

X=(X0 , x 1 , ..., x n-1 )

в шифрованный текст

Y=(Y0 , y 1 , ..., y n-1 )

при помощи подстановки Цезаря

Yi =CK i (xi )=(K i +Xi ) (mod m ) i=0...n-1 (1)

Для такой системы подстановки используют также термин “одноразовая лента” и “одноразовый блокнот”. Пространство ключей К системы одноразовой подстановки является вектором рангов (K 0 , K 1 , ..., K n-1 ) и содержит m n точек.

Наложение белого шума в виде бесконечного ключа на исходный текст меняет статистические характеристики языка источника. Системы одноразового использования теоретически не расшифруемы[3] , так как не содержат достаточной информации для восстановления текста.

Почему же эти системы неприменимы для обеспечения секретности при обработке информации? Ответ простой - они непрактичны, так как требуют независимого выбора значения ключа для каждой буквы исходного текста. Хотя такое требование может быть и не слишком трудным при передаче по прямому кабелю Москва - Нью-Йорк, но для информационных оно непосильно, поскольку там придется шифровать многие миллионы знаков.

Посмотрим, что получится, если ослабить требование шифровать каждую букву исходного текста отдельным значением ключа.

1.5.Системы шифрования Вижинера

Начнем с конечной последовательности ключа

k = (k 0 ,k 1 ,...,k n ),

которая называется ключом пользователя , и продлим ее до бесконечной последовательности, повторяя цепочку. Таким образом, получим рабочий ключ

k = (k 0 ,k 1 ,...,k n ), k j = k (jmod r , 0 £ j < ¥ .

Например, при r = ¥ и ключе пользователя 15 8 2 10 11 4 18 рабочий ключ будет периодической последовательностью:

15 8 2 10 11 4 18 15 8 2 10 11 4 18 15 8 2 10 11 4 18 ...

Определение. Подстановка Вижинера VIGk определяется как

VIGk : (x0 , x 1 , ..., x n-1 ) ® (y0 , y 1 , ..., y n-1 ) = (x0 +k , x 1 +k ,. .., x n-1 +k ).

Таким образом:

1) исходный текст x делится на r фрагментов

x i = (xi , x i+r , ..., x i+r (n-1) ), 0 £ i < r ;

2) i-й фрагмент исходного текста x i шифруется при помощи подстановки Цезаря Ck :

(xi , x i+r , ..., x i+r (n-1) ) ® (yi , y i+r , ..., y i+r (n-1) ),

Вариант системы подстановок Вижинера при m =2 называется системой Вернама (1917 г) . В то время ключ k =(k 0 ,k 1 ,...,k к-1 ) записывался на бумажной ленте. Каждая буква исходного переводилась с использованием кода Бодо в пятибитовый символ. К исходному тексту Бодо добавлялся ключ (по модулю 2). Старинный телетайп фирмы AT&T со считывающим устройством Вернама и оборудованием для шифрования, использовался корпусом связи армии США.

Очень распространена плохая с точки зрения секретности практика использовать слово или фразу в качестве ключа для того, чтобы k =(k 0 ,k 1 ,...,k к-1 ) было легко запомнить. В ИС для обеспечения безопасности информации это недопустимо. Для получения ключей должны использоваться программные или аппаратные средства случайной генерации ключей.

Пример. Преобразование текста с помощью подстановки Вижинера (r=4)

Исходный текст (ИТ1):

НЕ_СЛЕДУЕТ_ВЫБИРАТЬ_НЕСЛУЧАЙНЫЙ_КЛЮЧ

Ключ: КЛЮЧ

Разобьем исходный текст на блоки по 4 символа:

НЕ_С ЛЕДУ ЕТ_В ЫБИР АТЬ_ НЕСЛ УЧАЙ НЫЙ_ КЛЮЧ

и наложим на них ключ (используя таблицу Вижинера):

H+К=Ч, Е+Л=Р и т.д.

Получаем зашифрованный (ЗТ1) текст:

ЧРЭЗ ХРБЙ ПЭЭЩ ДМЕЖ КЭЩЦ ЧРОБ ЭБЮ_ ЧЕЖЦ ФЦЫН

Можно выдвинуть и обобщенную систему Вижинера. ЕЕ можно сформулировать не только при помощи подстановки Цезаря.

Пусть x - подмножество симметрической группы SYM(Zm ).

Определение . r-многоалфавитный ключ шифрования есть r -набор p = (p0 , p1 , ..., pr -1 ) с элементами в x .

Обобщенная система Вижинера преобразует исходный текст (x0 , x 1 ,..., x n-1 ) в шифрованный текст (y0 ,y1 ,...,yn-1 ) при помощи ключа p = (p0 , p1 , ..., pr -1 ) по правилу

VIGk : (x0 ,x1 ,...,xn-1 ) ® (y0 ,y1 ,...,yn-1 ) = (p00 ), p11 ), ..., pn-1 (xn-1 )), где используется условие pi = pimod r . Следует признать, что и многоалфавитные подстановки в принципе доступны криптоаналитическому исследованию. Криптостойкость многоалфавитных систем резко убывает с уменьшением длины ключа.

Тем не менее такая система как шифр Вижинера допускает несложную аппаратную или программную реализацию и при достаточно большой длине ключа может быть использован в современных ИС.

1.6. Гам­ми­ро­ва­ние

Гам­ми­ро­ва­ние яв­ля­ет­ся так­же ши­ро­ко при­ме­няе­мым крип­то­гра­фи­че­ским пре­об­ра­зо­ва­ни­ем. На са­мом де­ле гра­ни­ца ме­ж­ду гам­ми­ро­ва­ни­ем и ис­поль­зо­ва­ни­ем бес­ко­неч­ных клю­чей и шиф­ров Ви­жи­не­ра, о ко­то­рых речь шла вы­ше, весь­ма ус­лов­ная.

Прин­цип шифрования гам­ми­ро­ва­ни­ем за­клю­ча­ет­ся в ге­не­ра­ции гам­мы шиф­ра с по­мо­щью дат­чи­ка псев­до­слу­чай­ных чи­сел и на­ло­же­нии по­лу­чен­ной гам­мы на от­кры­тые дан­ные об­ра­ти­мым об­ра­зом (на­при­мер, ис­поль­зуя сло­же­ние по мо­ду­лю 2).

Про­цесс дешифрования дан­ных сво­дит­ся к по­втор­ной ге­не­ра­ции гам­мы шиф­ра при из­вест­ном клю­че и на­ло­же­нии та­кой гам­мы на за­шиф­ро­ван­ные дан­ные.

По­лу­чен­ный за­шиф­ро­ван­ный текст яв­ля­ет­ся дос­та­точ­но труд­ным для рас­кры­тия в том слу­чае, ес­ли гам­ма шиф­ра не со­дер­жит по­вто­ряю­щих­ся би­то­вых по­сле­до­ва­тель­ностей. По су­ти де­ла гам­ма шиф­ра долж­на из­ме­нять­ся слу­чай­ным об­ра­зом для ка­ж­до­го шиф­руе­мо­го сло­ва. Фак­ти­че­ски же, ес­ли пе­ри­од гам­мы пре­вы­ша­ет дли­ну все­го за­шиф­ро­ван­но­го тек­ста и не­из­вест­на ни­ка­кая часть ис­ход­но­го тек­ста, то шифр мож­но рас­крыть толь­ко пря­мым пе­ре­бо­ром (про­бой на ключ). Криптостойкость в этом слу­чае оп­ре­де­ля­ет­ся раз­ме­ром клю­ча.

Ме­тод гам­ми­ро­ва­ния ста­но­вит­ся бес­силь­ным, ес­ли зло­умыш­лен­ни­ку ста­но­вит­ся из­вес­тен фраг­мент ис­ход­но­го тек­ста и со­от­вет­ст­вую­щая ему шиф­ро­грам­ма. Про­стым вы­чи­та­ни­ем по мо­ду­лю по­лу­ча­ет­ся от­ре­зок ПСП и по не­му вос­ста­нав­ли­ва­ет­ся вся по­сле­до­ва­тель­ность. Зло­умыш­лен­ни­ки мо­жет сде­лать это на ос­но­ве до­га­док о со­дер­жа­нии ис­ход­но­го тек­ста. Так, ес­ли боль­шин­ст­во по­сы­лае­мых со­об­ще­ний на­чи­на­ет­ся со слов “СОВ.СЕК­РЕТ­НО”, то крип­тоа­на­лиз все­го тек­ста зна­чи­тель­но об­лег­ча­ет­ся. Это сле­ду­ет учи­ты­вать при соз­да­нии ре­аль­ных сис­тем ин­фор­ма­ци­он­ной безо­пас­но­сти.

Ниже рассматриваются наиболее распространенные методы генерации гамм, которые могут быть использованы на практике.
1   2   3


написать администратору сайта