Дозировка. 3.2.1. Дозировка составляющих и приготовление бетонной смеси. Дозировка составляющих и приготовление бетонной смеси (лекция)
Скачать 25.58 Kb.
|
Дозировка составляющих и приготовление бетонной смеси (лекция) Важнейшим условием приготовления бетонной смеси с заданными показателями свойств, а также обеспечения постоянства этих показателей от замеса к замесу является точность дозировки составляющих материалов в соответствии с рабочим составом бетона. Дозирование материалов производят дозаторами (мерниками) периодического или непрерывного действия. Перемешивание бетонной смеси производят в бетоносмесителях периодического и непрерывного действия. В бетоносмесителях периодического действия рабочие циклы машины протекают с перерывами, т. е. в них периодически загружаются отвешенные порции материалов, которые перемешиваются, а далее бетонная смесь выгружается. В бетоносмесителях непрерывного действия все три операции производят непрерывно. По способу перемешивания материалов бетоносмесители бывают с принудительным и гравитационным перемешиванием (при свободном падении). Для приготовления жестких и особо жестких бетонных смесей созданы так называемые вибросмесители, в которых перемешивание составляющих материалов осуществляется в сочетании с вибрацией, а в некоторых конструкциях — только вибрацией. При соответствующем режиме вибрации, когда силы трения и сцепления между частицами смеси нарушены, а силам тяжести противодействует значительно превосходящее их давление возбуждения в смеси, последняя переходит во взвешенное состояние с высокой подвижностью, что способствует интенсивному перемешиванию смеси. Транспортирование бетонной смеси к месту укладки должно обеспечить сохранение ее однородности и степени подвижности. При длительной перевозке бетонная смесь загустевает вследствие гидратации цемента, поглощения воды заполнителями и испарения, однако подвижность смеси к моменту укладки ее должна быть не меньше проектной. На заводах бетонные смеси транспортируют бетонораздатчиками, самоходными тележками, ленточными транспортерами; в цехах малой и средней мощности — электротельферами и электрокарами. Подвижные смеси можно транспортировать на большие расстояния по трубам с помощью пневматических установок. На строительные площадки, где ведутся бетонные работы, бетонную смесь доставляют в автобетоносмесителях, в которых бетонную смесь перемешивают примерно за 5 мин до прибытия на место. Завод на каждую партию бетонной смеси выдает паспорт с указанием состава бетона и его класса. Укладка бетонной смеси и ее уплотнение являются одними из наиболее трудоемких и энергоемких операций. Эти операции в настоящее время выполняются с помощью бетоноукладчиков или более простых машин — бетонораздатчиков. Бетоноукладчики позволяют в большей степени механизировать процесс распределения бетонной смеси в форме. Бетонная смесь должна быть уложена в форме так, чтобы в ней не оставались свободные места; особенно тщательно нужно заполнять углы и суженные места формы. После укладки бетонной смеси производят уплотнение ее вибрированием, виброштампованием, центрифугированием, вакуумированием, прокатом. Наиболее распространенным видом уплотнения бетонной смеси является вибрирование. Степень уплотнения бетонной смеси с помощью вибраторов зависит в основном от частоты и амплитуды колебаний, а также продолжительности вибрирования. По роду двигателя различают вибраторы электромеханические, электромагнитные и пневматические; наиболее распространены электромеханические вибраторы. В зависимости от вида, формы и размеров бетонируемой конструкции применяют вибраторы различных типов. На практике часто используют комбинированные способы уплотнения бетонной смеси. При центробежном способе формования для уплотнения бетонной смеси используют центробежную силу, возникающую при вращении формы. Частота вращения 400...900 об/мин, при этом бетонная смесь равномерно распределяется по стенкам формы и хорошо уплотняется; часть воды затворения (20...30%) отжимается к внутренней поверхности изделия, это способствует повышению плотности и водонепроницаемости. Такой способ формования применяют при изготовлении труб, полых колонн, опор и т. п. Повысить качество бетона можно вакуумированием смеси, при этом из бетонной смеси извлекается часть избыточной воды и воздуха, одновременно % под действием атмосферного давления бетонная смесь уплотняется, ускоряется твердение и повышается прочность бетона. Еще лучшие результаты дает повторное вибрирование после вакуумирования, при котором закрываются мелкие поры, образовавшиеся при вакуумировании. Прочность бетона нарастает в результате физико-химических процессов взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях. Бетон при нормальных Условиях постепенно набирает свою прочность и к 28 сут приобретает марочную прочность, причем в первые 3...7 сут прочностьбетона растет более интенсивно и на 7-е сутки составляет 60. 70% марочной (проектной) прочности. Для заводской технологии такие условия твердения бетона неприемлемы. В заводской технологии применяют ускоренные методы твердения — тепловую обработку при обязательном сохранении влажности изделий. На заводах сборного железобетона чаще всего применяют прогрев изделий при атмосферном давлении в паровоздушной среде с температурой 80...85 °С или выдерживание в среде насыщенного пара при 100 °С. Стремятся применять насыщенный пар, чтобы исключить высыхание бетона и создать хорошие условия для гидратации цемента. На заводах сборного железобетона применяют также и другие способы тепловой обработки изделий: электропрогрев, контактный обогрев, обогрев в газовоздушной среде и др. Твердение бетона и контроль качества Структура бетона образуется в результате затвердевания бетонной смеси и его превращения в камень. Уплотненная бетонная смесь в начальный период гидратации цемента сохраняет способность к пластическим деформациям. Со временем количество новообразований цементного камня увеличивается, система уплотняется и твердеет, образуется прочный камень определенной структуры. Время формирования структуры я свойств бетона зависит от состава и применяемых материалов- На формирование структуры оказывают влияние вид цемента, химические добавки, В/Ц, температура бетонной смеси, влажность среды и др. Введение в бетон пластифицирующих добавок, например СДБ, замедляет схватывание цемента в начальный период; повышение температуры ускоряет процесс схватывания и твердения. Структура затвердевшего тяжелого бетона представляет собой цементный камень с размещенными в нем зернами заполнителя, с множеством пор и пустот разных размеров и происхождения. Макроструктура бетона может быть представлена системой щебень — цементно-песчаный раствор. Макроструктура представляет строение системы песок — цементный камень, микроструктура — тонкое строение цементного камня. Микроструктура цементного камня в бетоне состоит из новообразований, непрореагировавших зерен цемента и микропор. С увеличением возраста бетона микроструктура меняется в результате гидратации цемента и роста новообразований, пористость уменьшается, меняются распределение пор и их размеры, бетон становится плотнее и прочнее. Прочность бетона растет неравномерно, в первые 7 сут. после затворения она нарастает быстро, а в дальнейшем замедляется. Скорость нарастания прочности бетона зависит от вида цемента. В первые дни твердения прочность бетона на быстротвердеющих цементах выше, чем, например, на белитовых цементах. Для твердения бетона необходима теплая и влажная среда. При повышенной температуре и влажной среде (в горячей воде с температурой 80 °С, во влажном паре с температурой до 100 °С или в автоклаве при температуре 175 °С и среде насыщенного водяного пара высокого давления) твердение протекает значительно быстрее, чем в нормальных условиях. Твердение бетона при температуре ниже 15 °С замедляется, а при температуре ниже 0°С практически прекращается. Изложенное выше имеет важное значение при изготовлении сборных железобетонных изделий на заводах, а также при бетонировании в зимнее время. Кроме прогрева бетона паром или электрическим током для ускорения применяют химические добавки, например хлористый кальций и др. Все вышеизложенное оказывает влияние на твердение бетона, формирование его структуры и, следовательно, свойств бетона. Специальные типы бетонов • Высокопрочный бетон прочностью 60...100 МПа получают на основе цемента высоких марок, промытого песка и щебня прочностью не ниже 100 МПа. Высокопрочный бетон приготовляют с низким В/Ц = 0,3...0,35 (смеси жесткие или малоподвижные) в бетоносмесителях принудительного действия. Для укладки смесей и формования изделий используют интенсивное уплотнение: вибрирование с пригрузом, двойное вибрирование и др. Значительный эффект в производстве высокопрочных бетонов дают суперпластификаторы. Высокопрочные бетоны бывают, как правило, и быстротвердеющими, однако для достижения отпускной прочности изделий в короткие сроки применяют тепловую обработку по сокращенному режиму. Новые особо быстротвердеющие цементы позволяют получать изделия из бетона без тепловой обработки. Тяжелый бетон имеет высокую прочность на растяжение, износ и морозостойкость. Для приготовления высокопрочного бетона используют все средства, как-то: принимают предельно низкое водоцементное отношение, суперпластификаторы, высокопрочный цемент, тщательное перемешивание и уплотнение бетонной смеси и строгий уход за бетоном. • Мелкозернистый бетон отличается большим содержанием цементного камня, поэтому его усадка и ползучесть несколько выше. Применяют его при изготовлении тонкостенных, в том числе армоцементных конструкций, а также в тех случаях, когда отсутствует крупный заполнитель. Свойства мелкозернистого бетона характеризуются такими же факторами, как и обычного бетона. Однако отсутствие крупного заполнителя влечет за собой увеличение водопотребности бетонной смеси, а для получения равнопрочного бетона и равноподвижной смеси возрастает расход цемента на 20...40% Для сокращения расхода цемента необходимо применять высококачественные пески, пластифицирующие добавки, суперпластификаторы, производить хорошее уплотнение смеси. Мелкозернистый бетон обладает повышенной прочностью на изгиб, хорошей водонепроницаемостью и морозостойкостью. Кислотоупорный бетон получают на кислотоупорном цементе и кислотоупорных заполнителях. Затворяют бетонную смесь растворимым стеклом в количестве, обеспечивающем необходимую подвижность бетонной смеси. Для изготовления кислотоупорного бетона, обладающего стойкостью при действии неорганических кислот (кроме плавиковой), применяют смесь растворимого стекла (силиката натрия) с 15% кремнефтористого натрия Na2SiFe6, а также песок кварцевый, щебень из бештаунита, андезита или кварцита и пылевидную фракцию (мельче 0,15 мм), приготовляемую из кислотостойких материалов. Твердение кислотоупорного бетона должно проходить в теплой воздушно-сухой среде. Кислотоупорный бетон характеризуется прочным сцеплением со стальной арматурой, стойкостью по отношению к действию серной, соляной, азотной кислот и др. (за исключением плавиковой), пределом прочности при сжатии через 3 сут— 11...12 МПа, через 28 сут— 15 МПа. При действии воды и слабых кислот кислотоупорный бетон постепенно разрушается; действию концентрированных кислот этот бетон сопротивляется хорошо, но растворы щелочей легко разрушают его. Кислотоупорный бетон Используют для различных конструкций и облицовки аппаратуры в химической промышленности, заменяя им дорогие материалы: листовой свинец, кислотоупорную керамику, тесаный камень. Жаростойкий бетон способен сохранять в заданных пределах свои физико-механические свойства при длительном воздействии высоких температур. В зависимости от применяемого вяжущего жаростойкие бетоны бывают следующих видов: бетоны на портландцементе, шлакопортландцемента, на глиноземистом цементе и жидком стекле. Для повышения стойкости бетона при нагревании в его состав вводят тонкомолотые добавки из хромитовой руды, шамотного боя, магнезитового кирпича, андезита, гранулированного доменного шлака и др. Тонкость помола добавки для бетона на портландцементе должна быть такой, чтобы через сито № 009 проходило не менее 70%, а для бетона на жидком стекле — не менее 50%. В качестве мелкого и крупного заполнителя применяют хромит, шамот, бой глиняного кирпича, базальт, диабаз, андезит и др. При правильно выбранных вяжущих и заполнителях бетон может длительное время выдерживать, не разрушаясь, действие температуры до 1200°С. Выбор материалов производят в зависимости от условий и температуры его эксплуатации. Жаростойкие бетоны на портландцементе и глиноземистом цементе производят класса (марки) не менее В20 (250), а на жидком стекле — В 12,5 (150). Бетоны на жидком стекле не применяют в условиях частого воздействия воды, а на портландцементе — в условиях кислой агрессивной среды. Бетоны на портландцементе разных составов используются при одностороннем нагреве с предельной температурой 1700°С, на глиноземистом цементе и на жидком стекле — до 1400°С. • Декоративные бетоны получают при введении в бетонную смесь щелоче- и светостойких пигментов в количестве 8...10 % от массы цемента (охра, мумия, сурик и др.) или применении цветных цементов. В отдельных случаях используют заполнители, обладающие необходимым цветом, например туфы, красные кварциты, мрамор и другие окрашенные горные породы. Цветные бетоны используют для декоративных целей в строительстве зданий и сооружений, при устройстве пешеходных переходов, разделительных полос на дорожных покрытиях, парковых дорожек, а также изготовлении элементов городского благоустройства. • Бетон для дорожных и аэродромных покрытий. Условия работы дорожного бетона неблагоприятны. Он многократно подвергается увлажнению и высыханию, замораживанию и оттаиванию, а также воздействию транспортных средств. Основными расчетными напряжениями являются напряжения от изгиба. В связи с этим к дорожному бетону предъявляют повышенные требования к прочности на растяжение при изгибе, морозостойкости, износостойкости и воздухостойкости. Долговечность дорожного бетона достигается не только выбором качественных материалов, но и правильной технологией производства работ. Для дорожного бетона применяют портландцемент высоких марок с органическим содержанием СзА, высокопрочные качественные заполнители — щебень из гранита, известняка, кварцевый песок и др. Для увеличения подвижности бетонной смеси применяют пластифицирующие и воздухововлекающие добавки, иногда и ускорители твердения. Бетон для защиты от радиоактивного воздействия. В качестве заполнителей для такого бетона применяют материалы с высокой плотностью — барит, магнетит, лимонит, а также металлический скрап в виде чугунной дроби, обрезков арматурного полосового и профильного металла, металлической стружки и др. Плотность защитных особо тяжелых бетонов зависит от вида заполнителя и его плотности. В качестве вяжущих для приготовления особо тяжелых защитных бетонов применяют портландцемента, шлакопортланд-цементы и глиноземистые цементы. В специальных бетонах наиболее эффективным вяжущим может быть такое вещество, которое в результате твердения присоединяет большое количество воды (с целью увеличения в бетоне водорода). Таким веществом является гидросульфоалюминат кальция, который образуется при взаимодействии трехкальциевого алюмината, содержащегося в портландцементе, с гипсом. Поэтому один из видов цемента специального назначения содержит повышенное количество трехкальциевого алюмината и гипса. Для предупреждения его возможного самопроизвольного разрушения к нему добавляют гидравлические добавки (трепел, диатомит и др.). Кроме портландцемента применяют также глиноземистые, расширяющиеся и безусадочные цементы. Но последние вяжущие имеют высокую стоимость. Для улучшения защитных свойств гидратных бетонов (такое название эти бетоны получили за большое содержание в них воды) вводят добавки, повышающие содержание в бетоне водорода, карбида, бора, хлористого лития, сернокислого кадмия, и другие добавки, содержащие легкие элементы — водород, литий, кадмий и борсодержащие вещества. • Легкими бетонами называют все виды бетонов, имеющие среднюю плотность в воздушно-сухом состоянии от 200 до 2000 кг/м3. Главные требования, предъявляемые к легкому бетону, — заданная средняя плотность, необходимая прочность к определенному сроку твердения и долговечность (стойкость). Характерными особенностями легкого бетона являются его пониженные средняя плотность и теплопроводность. Легкие бетоны классифицируют по различным признакам: основному назначению, виду вяжущего, заполнителя, структуре. По назначению легкие бетоны подразделяют на два вида: конструкционные, включая конструкционно-теплоизоляционные, и теплоизоляционные и др. По виду вяжущего легкие бетоны могут быть на основе цементных, известковых, шлаковых, гипсовых, полимерных, обжиговых и других вяжущих, обладающих специальными свойствами. По виду крупного пористого заполнителя установлены следующие виды легких бетонов: керамзитобетон, шунгизитобетон, аглопоритобетон, шлакопемзобетон, перлитобетон, бетон на Щебне из пористых горных пород, вермикулитобетон, шлакобетон (бетон на топливном или пористом отвальном металлургическом Шлаке), бетоны на аглопоритовом или зольном гравии. По структуре легкие бетоны подразделяют наплотные, поризованные и крупнопористые. Легкие бетоны на пористых заполнителях имеют принципиальные отличия от обычных тяжелых бетонов, обусловленные особенностями пористых заполнителей. Последние имеют меньшую плотность, чем плотные, небольшую прочность, зачастую ниже заданного класса бетона, обладают сильно развитой и шероховатой поверхностью. Плотность и прочность легкого бетона зависят главным образом: от насыпной плотности и зернового состава заполнителя, расхода вяжущего и воды, а также от метода уплотнения легкобетонной смеси. По качеству пористого заполнителя можно ориентировочно судить, какая прочность легкого бетона может быть получена. В строительной практике ограждающие и несущие конструкции получают из относительно плотных легких бетонов значительной прочности (2,5... 10 МПа). Снижение плотности достигается тщательным подбором зернового состава пористого заполнителя, а также наименьшим расходом вяжущего для бетона заданной прочности, т. е. максимальным заполнением объема бетона пористым заполнителем, так как заполнитель легче цементного камня. При этом важно правильное соотношение крупных и мелких фракций заполнителя. Легкие бетоны в силу своей высокой пористости менее морозостойки, чем тяжелые, но достаточно морозостойки для применения в стеновых и других конструкциях зданий и сооружений. Хорошую морозостойкость легких бетонов можно получить, применяя искусственные пористые заполнители, обладающие низким водопоглощением, например, керамзит, а также путем поризации цементного камня. Повышают морозостойкость легких бетонов также введением гидрофобизующих добавок. Легкие бетоны ввиду универсальности свойств применимы в различных строительных элементах зданий и сооружений Так, из легких бетонов на пористых заполнителях, обладающих низкой теплопроводностью, изготовляют панели для стен и перекрытий отапливаемых зданий; из напряженного армированного бетона выполняют пролетные строения мостов, фермы, плиты для проезжей части мостов, из легкого бетона строят плавучие средства. |