9.4. Превращение переохлажденного аустенита
при изотермической выдержке
Диаграмма изотермического превращения аустенита. Основ- ное превращение, протекающее во время охлаждения при отжиге эв- тектоидной стали, – это распад аустенита при температуре ниже точ- ки А
1
(727 °С) на смесь феррита с цементитом. При скорости охла- ждения стали, обеспечивающей полное протекание диффузионных процессов и, соответственно, близкое к равновесному состоянию ста- ли, в структуре последней в соответствии с диаграммой «железо–
углерод» образуется перлит. Процесс диффузионного превращения аустенита в перлит определяется разностью свободных энергий аусте- нита и продуктов его распада Ф + Ц, а кинетика превращения – числом образования центров превращения перлита и интенсивностью их роста.
Перлит растет из отдельных центров в виде колоний. Зародышем перлитной колонии обычно является цементит, зарождение которого облегчено на границе аустенитных зерен. При утолщении цементит- ной пластины вблизи нее аустенит обедняется углеродом и создаются условия для зарождения путем полиморфного
превраще- ния ферритных пластин, примыкающих к цементитной пластине.
При утолщении же ферритной пластины, практически не содержа- щей углерода, он оттесняется в аустенит, в результате чего созда- ются благоприятные условия для появления новых цементитных пла- стин.
100
Кинетика эвтектоидного превращения аустенита в перлит изоб- ражается С-образными кривыми на диаграмме изотермического пре- вращения аустенита, которую строят следующим образом. Нагретые до температуры на 30…50 °С выше
Ас1
образцы, имеющие структуру однородного аустенита, переносят в термостаты (соляные ванны) с заданной температурой. Так как аустенит парамагнитен, а механиче- ская смесь феррита и цементита обладает ферромагнитными свой- ствами, наблюдения за изменениями магнитных характеристик об- разцов позволяют оценить кинетику превращений аустенита в перлит при различных температурах.
На рис. 9.4 приведены кинетические кривые изотермического распада аустенита, полученные для различных температур:
tl
>
t2
>
>
t3
>
t4
>
t5
>
t6
. Характер кривых показывает, что сначала распад идет медленно, затем скорость его растет и при образовании 50% продук- тов
превращения достигает максимума, а по мере снижения количе- ства оставшегося аустенита постепенно затухает. Точки
а1
,
а2
,
а3
,
а4
,
а5
,
а6
соответствуют началу, точки
b1
,
b2
,
b3
,
b4
,
b5
,
b6
– концу превра- щения.
Преобразуя координаты, по полученным опытным кинетическим кривым строят диаграммы изотермического превращения аустенита.
Для этого на горизонтальные пунктирные линии температур изотер- мических выдержек
t1
,
t2
,
t3
,
t4
,
t5
,
t6
наносят точки начала (
a) и конца
(
b) превращения. Тогда кривая
a1
–
а6
есть линия начала, в
b1
–
b6
– ли- ния конца превращения (рис. 9.4,
б).
а б Рис. 9.4. Кинетические кривые превращения аустенита в перлит (
а) и построенная по ним диаграмма изотермического превращения аустенита (
б)
101
На рис. 9.5 приведена диаграмма изотермического превращения аустенита для эвтектоидной стали (0,8% С). Горизонтальные линии
М
н и М
к показывают температуры начала и конца бездиффузионного мартенситного превращения.
Рис. 9.5. Диаграмма изотермического превращения аустенита эвтектоидной стали
Диаграммы изотермического превращения также называют
С-диаграммами. На диаграмме выделяют следующие области: 1) об- ласть устойчивого аустенита (для стали, содержащей 0,8% С, выше
А
с1
); 2) область переохлажденного аустенита (расположенная слева от кривой начала его распада) определяет продолжительность инкуба- ционного периода, характеризующую устойчивость переохлажденно- го аустенита; 3) область начавшегося, но еще не закончившегося пре- вращения А → П; 4) область закончившегося превращения; 5) область начавшегося, но еще не закончившегося мартенситного превращения
(между М
н
– М
к
); 6) мартенситная область (ниже М
к
). С усилением переохлаждения устойчивость переохлажденного аустенита быстро уменьшается, достигая минимума (для эвтектоидной стали около
550 °С), и далее вновь возрастает.
В зависимости от степени переохлаждения аустенита различают три температурные области превращения: перлитную (переохлажде- ние до 500 °С), мартенситную (переохлаждение ниже М
н
– для эвтек- тоидной стали ниже 240 °С) и промежуточную (бейнитную) (пере-
102 охлаждение для эвтектоидной стали в интервале от 500 до 240 °С).
В эвтектоидной стали при распаде аустенита в области температур
650…700
С образуется собственно перлит, межпластинчатое рассто- яние в колониях которого равно 0,5…1 мкм.
При усилении переохлаждения увеличивается число зародышей новой фазы. С ростом числа чередующихся пластин феррита и цемен- тита уменьшаются их размеры и расстояния между ними, с пониже- нием температуры растет дисперсность продуктов превращения аустенита (рис. 9.6). Под степенью дисперсности понимают расстоя- ние между соседними пластинками феррита и цементита. При
600…650 °С
образуется ферритно-цементитная смесь, межпластинча- тое расстояние в которой равно 0,2…0,4 мкм, называемая сорбитом, а при 550…600 °С – троостит с межпластинчатым расстоянием около
0,1 мкм.
Рис. 9.6. Схемы ферритно-цементитных структур:
а – перлит;
б – сорбит;
в – троостит
Перлит, сорбит, троостит являются структурами одной природы – механической смесью феррита и цементита и различаются лишь сте- пенью дисперсности. Их называют перлитными структурами. С уве- личением степени дисперсности пластин цементита растут твердость и прочность стали. Наибольшую пластичность имеют стали с сорбит- ной структурой. Троостит, образующийся при более низкой темпера- туре превращения, характеризуется меньшей пластичностью (мень- шими
и
). При непрерывном охлаждении указанные структуры образуются в углеродистой эвтектоидной стали при следующих усло- виях: перлит – при охлаждении из аустенитного состояния вместе с печью, сорбит – при охлаждении на воздухе, троостит – при охлажде- нии в масле. Твердость перлита, сорбита и троостита равна прибли- женно 170…230; 230…330; 330…400 соответственно.
103
Перлитные структуры в зависимости от формы цементита могут быть пластинчатыми или зернистыми. Пластинчатые структуры обра- зуются при превращении однородного (гомогенного) аустенита, а зернистые – неоднородного.
Так как в доэвтектоидных и заэвтектоидных сталях в отличие от эвтектоидных в интервале температур
3 1
A
A
сначала выделяются избыточные фазы – феррит (в доэвтектоидных сталях) или избыточ- ный цементит (в заэвтектоидных сталях), то на диаграмме изотерми- ческого распада аустенита появляется дополнительная кривая, харак- теризующая начало выделения соответствующих избыточных фаз
(рис. 9.7). Их форма зависит от степени переохлаждения аустенита и размера аустенитного зерна. При небольших степенях переохлажде- ния феррит и цементит выделяются в виде сетки по границам аусте- нитных зерен. Начиная с некоторой степени переохлаждения в доэв- тектоидных сталях от компактных кристаллов или от границ зерен растут пластины феррита, т.е. образуется видманштетова структура, характеризующаяся пониженной ударной вязкостью; в заэвтектоид- ных сталях цементит образует пластины (иглы) внутри аустенитного зерна.
Рис. 9.7. Схемы диаграмм изотермического превращения переохлажденного аустенита: а – доэвтектоидная сталь; б – эвтектоидная сталь;
в – заэвтектоидная сталь
104
9.5. Мартенситное превращение При больших степенях переохлаждения возрастает термодина- мическая неустойчивость аустенита, а скорость диффузии углерода резко падает. При переохлаждении аустенита в эвтектоидной стали до
240 °С подвижность атомов углерода близка к нулю и происходит бездиффузионное превращение аустенита. При этом меняется лишь тип решетки
, а весь углерод, ранее растворенный в решетке аустенита,
остается в решетке феррита, несмотря на то что равновес- ная концентрация углерода в феррите при комнатной температуре не превышает 0,006%. В результате образуется пересыщенный упорядо- ченный твердый раствор внедрения углерода в α-железе, который называется мартенситом. Из-за пересыщенности углеродом решетка мартенсита сильно искажается и вместо кубической приобретает тет- рагональную форму, при которой отношение параметров решетки существенно отличается от единицы, т.е.
с/а ≠ 1. Чем больше углеро- да, тем выше степень тетрагональности мартенсита (рис. 9.8).
Высокая скорость образования кристал- лов мартенсита при низкой температуре пре- вращения объясняется тем, что имеет место непосредственный переход от кристалличе- ской решетки аустенита к решетке мартенси- та (когерентные границы). При практически мгновенном
-переходе атомы смеща- ются строго ориентированно на расстояния, меньшие межатомных, т.е. превращение бездиффузионное. При этом сохраняется об- щая сопрягающаяся плоскость решеток
- и
-Fe – так называемая когерентная связь.
Поэтому кристаллическая решетка новой фа- зы мартенсита закономерно ориентирована относительно исходной фазы – аустенита. Из-за когерентного сопряже- ния решеток и различия удельных объемов фаз (аустенита и мартенси- та) мартенситное превращение приводит к возникновению больших внутренних напряжений.
Мартенситное превращение идет в интервале температур
Мн и
Мк при непрерывном охлаждении. Для эвтектоидной стали оно начинает- ся при 240 и заканчивается при –50 °С. Однако при этой температуре в стали сохраняется еще некоторое количество непревращенного, так называемого остаточного, аустенита. Охлаждение ниже температуры
Рис. 9.8. Тетрагональная кристаллическая ячейка мартенсита
105
Мк не приводит к его окончательному распаду. Положение точек
Мн и
Мк не зависит от скорости охлаждения, но зависит от содержания уг- лерода в стали (рис. 9.9). Все легирующие элементы, растворенные в аустените, за
исключением кобальта и алюминия, понижают точки
Мн и
Мк
. Мартенситное превращение очень чувствительно к напряже- нию, а деформация аустенита может вызвать превращения даже при температурах выше
Мн
(образуется мартенсит деформации).
Рис. 9.9. Влияние содержания углерода в стали на температуру начала (
Мн
) и конца (
Мк
) мартенситного превращения
Кристаллы, в зависимости от состава сплава, а следовательно, от температуры своего образования, могут иметь различную морфоло- гию и субструктуру. Различают два вида мартенсита: пластинчатый
(игольчатый) и пакетный (реечный).
Пластинчатый мартенсит образуется в высокоуглеродистых ста- лях с низкими значениями
Мн и
Мк
. Сами кристаллы мартенсита в этом случае представляют собой широкие пластины, которые в плос- кости шлифа имеют вид игл. Пакетный (реечный) мартенсит характе- рен для низко- и среднеуглеродистых, а также конструкционных ле- гированных сталей. В этом случае кристаллы мартенсита имеют форму тонких реек, вытянутых в одном направлении и объединен- ных в пакеты. Тонкая структура пакетного (реечного) мартенси- та представляет собой запутанные дислокации высокой плотности
(1010…1012 см
–2
) при полном отсутствии двойников. В легирован- ных сталях внутри мартенситных пакетов между кристаллами мар-
106 тенсита, как правило, присутствуют прослойки остаточного аустени- та. Размеры кристаллов любой морфологии мартенсита определяются величиной исходного зерна аустенита. Они тем крупнее, чем больше зерно.
Если эвтектоидную сталь охладить только до комнатной темпе- ратуры, то в структуре будет присутствовать, кроме мартенсита, не- которое количество остаточного аустенита, что нежелательно, так как приводит к неоднородности свойств по сечению и к изменению раз- меров деталей.
Последнее обстоятельство объясняется тем, что мар- тенсит имеет наибольший удельный объем по сравнению с другими структурами, а аустенит – наименьший. Поэтому при переходе от аустенитной структуры к мартенситной объем и размеры деталей увеличиваются. К особенностям мартенситного превращения отно- сится то, что оно происходит только при непрерывном охлаждении.
Задержка охлаждения при температуре выше температуры конца мар- тенситного превращения приводит к стабилизации аустенита, кото- рый становится более устойчивым. При последующем охлаждении его превращение затруднено и протекает с меньшей интенсивностью и полнотой. Эффект стабилизации аустенита зависит от температуры остановки при охлаждении. Таким образом, особенностями мартен- ситного превращения являются отсутствие инкубационного периода, его бездиффузионный характер, ориентированность кристаллов и об- разование при непрерывном охлаждении в интервале температур
Мн
–
Мк
Упрочнение при закалке стали определяется действием несколь- ких механизмов торможения дислокаций. Важнейшая роль отводится углероду, но мартенситное превращение в чистом железе и безугле- родистых сплавах приводит к повышению прочностных свойств в три-четыре раза по сравнению с отожженным состоянием. Твердость железа в результате мартенситного превращения увеличивается с 60 до 200 HV.
Характерная черта мартенсита – высокая твердость и прочность, возрастающие с увеличением содержания углерода в мартенсите.
Временное сопротивление низкоуглеродистого мартенсита (0,025% С) составляет 1000 МПа, а мартенсита с содержанием 0,6…0,7% С –
2600…2700 МПа. Объясняется это тем, что атомы углерода, внедрен- ные в решетку железа, затрудняют скольжение дислокаций в мартен- сите, образуя атмосферы на дислокациях, закрепляя их. Кроме того, происходит выделение из твердого раствора дисперсных частиц кар- бида. Мартенсит имеет высокую твердость (до 65 HRC
э
) и хрупкость.
Высокая твердость обусловлена искажениями кристаллической ре-
107 шетки и, соответственно, большими внутренними напряжениями, определяемыми растворенным углеродом, а также возникновением фазового наклепа за счет увеличения объема при превращении аусте- нита в мартенсит. В результате этого плотность дислокаций в мартен- сите достигает уровня холоднодеформируемой стали – 10 10
…10 12
см
–
2
. Однако с повышением содержания углерода в мартенсите возраста- ет и его склонность к хрупкому разрушению. Мартенсит, содержащий более 0,35…0,4% С, имеет низкое сопротивление зарождению и рас- пространению трещины, а также низкие значения вязкости разруше- ния К
1с
Увеличение удельного объема при образовании мартенсита – од- на из основных причин возникновения при закалке больших внутрен- них напряжений, вызывающих деформацию и коробление изделий, а также появление закалочных трещин.
9.6. Бейнитное превращение аустенита
В углеродистых сталях в интервале 500…250 °С происходит бей- нитное (промежуточное) превращение аустенита, результаты которо- го сходны с получаемыми при диффузионном перлитном и бездиффу- зионном мартенситном превращениях: диффузионное перераспреде- ление углерода в аустените между продуктами его распада и мартен- ситное бездиффузионное превращение
В результате бейнитного превращения образуется смесь -фазы
(феррита) и карбида, которая называется бейнитом. Кристаллы -фазы образуются в промежуточном интервале температур путем когерент- ного роста упругой связи с исходной
-фазой, т.е. точно так же, как растут кристаллы мартенсита при мартенситном превращении. Но, в отличие от последнего, для которого характерно «мгновенное» обра- зование кристаллов мартенсита, при бейнитном превращении кри- сталлы -фазы растут сравнительно медленно, что связано с необхо- димостью диффузионного отвода атомов углерода из аустенита с це- лью получения
-фазы, обедненной углеродом. Это объясняется тем, что в промежуточном интервале температур -фаза может образовы- ваться из
-фазы, обедненной углеродом. Карбид в бейните не имеет пластинчатого строения, свойственного перлиту. Карбидные частицы в бейните очень дисперсны, их можно видеть только под электрон- ным микроскопом.
Различают верхний и нижний бейнит, образующийся соответ- ственно в верхней и нижней части промежуточного интервала темпе-
108 ратур (условная граница между ними 350 °С). Верхний бейнит имеет перистое строение, а нижний – игольчатое, мартенситоподобное.
Верхний бейнит отличается от нижнего характером распределе- ния и составом карбидной фазы. Электронно-микроскопический ана- лиз показал, что в верхнем бейните карбидные частицы расположены между пластинами феррита или по границам и внутри них, а в ниж- нем бейните включения карбида находятся только внутри пластин
α-фазы. Карбидная фаза в верхнем бейните – цементит, а в нижнем –
ε-карбид, который заменяется цементитом с увеличением времени выдержки (как при отпуске стали).
Продукты изотермического превращения переохлажденного аустенита в промежуточном интервале температур по составу, структу- ре и свойствам близки к
продуктам отпуска мартенсита закаленной стали, если температуры бейнитного превращения и отпуска одинако- вы.
Прочность бейнита выше, чем перлита, и возрастает с понижени- ем температуры изотермического превращения. Повышенная проч- ность определяется малыми размерами ферритных кристаллов, дис- персными выделениями карбидов, искажениями решетки α-железа в связи с ее пересыщением углеродом, а также повышенной плотно- стью дислокаций в бейнитном феррите, закрепленных коттреловски- ми атмосферами из атомов углерода.
Пластичность при переходе из перлитной области в бейнитную
(верхний бейнит) падает, а затем с понижением температуры вновь возрастает (нижний бейнит). Снижение пластичности в области верх- него бейнита связано с выделением сравнительно грубых карбидов преимущественно по границам ферритных кристаллов. В нижнем же бейните частицы карбидов расположены внутри кристаллов α-фазы, и поэтому при высокой прочности в стали с нижним бейнитом сохраня- ется высокая вязкость.
В так называемых «бейнитных» сталях (например, малоуглероди- стая сталь, легированная 0,5% Мо и бором) бейнитная структура обра- зуется при охлаждении на воздухе с температур горячей прокатки.