Реферат на тему электроснабжение. Якубов М.А. ЭЭз-20-1. Электроснабжение
Скачать 40.19 Kb.
|
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «АНГАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАФЕДРА ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ Энергоснабжение Реферат на тему: Электроснабжение Выполнил: Студент группы ЭЭз-20-1 Якубов Максим Александрович Проверил: Доцент Съемщиков Сергей Евгеньевич Ангарск, 2021 г. Содержание. Введение…………………………………………………………………………. 3 Источники электроэнергии…………………………………………………….. 5 Электрические сети……………………………………………………………... 8 Воздушные линии электропередач……………………………………….. 9 Кабельные линии электропередач……………………………………..... 11 Потребители электроэнергии…………………………………………………. 14 Заключение…………………………………………………………………........ 17 Список литературы…………………………………………………………….. 18 Введение Современное общество трудно представить без использования электрической энергии. Она применяется во всех отраслях хозяйственной деятельности: в промышленности, городском, сельском и коммунальном хозяйстве; в быту и на транспорте. Особенности энергетического производства определяют трудности управления в отрасли, вызывающие необходимость реагирования на все изменения потребления электрической энергии. При этом существенное влияние на развитие производства оказывает зависимость режима работы предприятия от режима потребления. Эта зависимость выдвигает особые требования к планированию работы не только самого объекта электроснабжения, но и энергоснабжающей организации. Особенности энергетического производства, характерные для всех отраслей, накладывают на энергопредприятие и потребители электрической энергии особую ответственность за поддержание нормируемых параметров электроэнергии и снижение части потерь, обусловленных нерациональным управлением развития системы электроснабжения, с одной стороны, и отсутствием планомерного подхода к использованию электрической энергии – с другой. Недостаточность знаний о распределении полученных мощностей и влиянии роста нагрузок на параметры энергетической системы не позволяют разработать комплекс энергопотребления, мероприятий по стабилизации режима который определяет происхождение негативных процессов, как в распределительных сетях низкого напряжения, так и в энергосистеме в целом. Электрическая энергия вырабатывается на электрических станциях, располагаемых, как правило, у источников первичной энергии. Электростанции связаны между собой и с потребителями электрическими системами, объединяющими их в энергосистемы, которые имеют централизованное управление. Чтобы уменьшить стоимость электрической энергии необходимо распределять электрическую нагрузку определенным образом. Например, при достаточном запасе воды в водохранилище на гидравлических станциях их нагрузку увеличивают, одновременно разгружая тепловые станции и экономя при этом топливо. Создание энергосистем позволяет не только повысить экономичность энергоснабжения, но и значительно увеличить его надёжность, а также повысить качество электрической энергии. Часть энергосистемы, объединяющая генераторы, распределительные устройства, трансформаторные подстанции и потребители электрической энергии (электроприёмники – ЭП), принято называть электрической системой. Часть электрической системы, в которую входят и линии различных напряжений, называют электрической сетью. ЭС разделяются на питающие и распределительные. Источники электроэнергии Основным источником электроэнергии в мире являются, как известно, различного рода электростанции – тепловые электростанции, гидроэлектростанции и электростанции атомные. Тепловые электростанции (ТЭС), работающие на органическом топливе (уголь, мазут, газ, сланцы, торф), являются на сегодня основным видом используемых в России энергопроизводителей. Выбор места размещения тепловых электростанций определяется в основном наличием в данном регионе природных и топливных ресурсов. Мощные ТЭС строятся, как правило, в местах добычи топливных ресурсов или недалеко от крупных центров нефтеперерабатывающей промышленности. Тепловые электростанции, на которых в качестве топлива используются местные виды горючего (сланец, торф, низкокалорийные и многозольные угли), стараются размещать согласно потребности в электроэнергии и, в тоже время, с учётом наличия тех или иных видов топливных ресурсов. Электростанции, работающие на высококалорийном топливе, доставка которого к месту использования экономически целесообразна, размещаются обычно с учётом потребительского спроса на электроэнергию. Гидроэлектростанции представляют собой специальные сооружения, возведённые в местах перекрытия больших рек плотиной и использующие энергию падающей воды для вращения турбин электрогенератора. Этот способ получения электроэнергии является наиболее экологичным, поскольку обходится без сжигания тех или иных видов топлива и не оставляет никаких вредных отходов после себя. Атомные электростанции (АЭС) отличаются от тепловых лишь тем, что, если в ТЭС для нагрева воды и получения пара используется горючее топливо, то в АЭС источником нагрева воды служит энергия тепла, выделяемого в процессе ядерной реакции. В настоящее время большую часть всей вырабатываемой в мире электроэнергии дают тепловые электростанции, мощность которых может составлять сотни тысяч и миллионы киловатт. Для совместного и согласованного производства электроэнергии электростанции различного типа объединяют в энергосистемы. Объединение электростанций, а также самих энергосистем между собой позволяет снизить стоимость электроэнергии и гарантирует бесперебойность режима электроснабжения потребителя. Объясняется это тем, что производство и расходование электроэнергии происходят одновременно, и невозможно аккумулировать всю вырабатываемую энергию в каком-либо виде. Поэтому электростанции обязаны иметь определённый резерв по рабочей мощности, необходимый для того, чтобы быть способными в любой момент удовлетворить возросший спрос на электроэнергию со стороны потребителя (на возросшую нагрузку). А величина потребления (спроса на энергию) может резко колебаться при изменении режимов и условий работы потребителей. В городах в зимний период, например, потребление электроэнергии резко возрастает, а летом - снижается. В сельском хозяйстве, напротив, электрические подстанции больше загружены именно летом, когда производятся сезонные полевые работы. Кроме того, максимальные нагрузки электростанций, расположенных на востоке и западе страны обычно не совпадают из-за разницы во времени. При коллективной работе электростанций они подпитывают друг друга, что обеспечивает их более равномерную загрузку и повышение КПД работы. На электростанциях, не входящих в состав энергосистемы, не допускается применение мощных узлов по транспортировке и преобразованию электроэнергии. Объясняется это тем, что выход подобного узла из строя моментально парализует работу промышленных предприятий, обесточивает целые районы и грозит аварийной остановкой систем водоснабжения и т. п. При объединении энергопроизводителей в энергосистемы нет оснований отказываться от таких мощных агрегатных узлов, поскольку нагрузку вышедшего из строя участка линии мгновенно подхватят оставшиеся в рабочем состоянии системы. Наряду с традиционным способом получения электроэнергии с помощью электростанций всё большую популярность приобретают в последнее время альтернативные источники электроэнергии. К подобным источникам можно отнести, например, ветряные электрогенераторы, которые преобразуют природную силу ветра в электрический ток. Всё большей популярностью в наше время пользуются и солнечные батареи, которые, в отличие от электрогенератора, используют принцип прямого преобразования энергии солнечных лучей в электрическую энергию (фотоэффект). Электрические сети Электрическая сеть – совокупность электроустановок для передачи и распределения электроэнергии, включающая в себя подстанции, распределительные пункты, воздушные (ВЛ) и кабельные линии (КЛ) электропередачи, токопроводы. По функциональному назначению сети подразделяются на системообразующие, питающие и распределительные. Системообразующими называются сети, предназначенные для объединения электростанций и энергосистем на параллельную работу (сети 330 кВ и выше). Питающие – сети, в которых электроэнергия передается от подстанций системообразующей сети или от шин 110…220 кВ крупных электростанций к центрам питания распределительных сетей на большие расстояния. Распределительными называются сети, предназначенные для распределения электроэнергии между электроприемниками. К ним относятся городские и сельские электрические сети, а также сети промышленных предприятий. Центры питания таких сетей, как правило, расположены на небольшом расстоянии от большого количества электроприемников. Воздушные линии электропередач Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются: провода; защитные тросы; опора, поддерживающая провода и торосы на определенной высоте над уровнем земли или воды; изоляторы, изолирующие провода от тела опоры; линейная арматура. За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоцепные, как правило 2-цепные. Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом. Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения. Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути. Кабельная линия электропередачиКабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств. В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий. Кабельную продукцию в зависимости от конструкций подразделяют на кабели, провода и шнуры. Кабель – полностью готовое к применению заводское электротехническое изделие, состоящее из одной или более изолированных токопроводящих жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в состав которого может входить броня. Провод – одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой. Шнур – две или более изолированных, или особо гибких жил сечением до 1,5 мм2, скрученных или уложенных параллельно, поверх которых в зависимости от условий прокладки и эксплуатации могут быть наложены неметаллическая оболочка и защитные покрытия. Силовые кабели в зависимости от класса напряжения имеют от одной до пяти алюминиевых или медных жил сечением от 1,5 до 2000 мм2, из них сечением до 16 мм2 – однопроволочные, свыше – многопроволочные. По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока. Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения. Кабели низкого напряжения выполняются с количеством жил до пяти. Такие кабели могут иметь одну, две или три фазных жилы, а также нулевую рабочую жилу N и нулевую защитную жилу РЕ или совмещенную нулевую рабочую и защитную жилу PEN. По материалу токопроводящих жил различают кабели с алюминиевыми и медными жилами. В силу дефицитности меди наибольшее распространение получили кабели с алюминиевыми жилами. В качестве изоляционного материала используется кабельная бумага, пропитанная маслоканифольным составом, пластмасса и резина. Различают кабели с нормальной пропиткой, обедненной пропиткой и пропиткой нестекающим составом. Кабели с обедненной или нестекающей пропиткой прокладывают по трассе с большим перепадом высот или по вертикальным участкам трассы. Технико-экономические исследования показывают, что высокотемпературные сверхпроводящие кабели будут более эффективными по сравнению с другими видами электропередачи уже при передаваемой мощности более 0,4 — 0,6 ГВ·А в зависимости от реального объекта применения. Высокотемпературные сверхпроводящие кабели предполагается в будущем использовать в энергетике в качестве токопроводов на электростанциях мощностью свыше 0,5 ГВт, а также глубоких вводов в мегаполисы и крупные энергоемкие комплексы. При этом необходимо реально оценивать экономические аспекты и полный комплекс работ по обеспечению надежности таких кабелей в эксплуатации. Потребители электроэнергии В зависимости от выполняемых функций, возможностей обеспечения схемы питания от энергосистемы, величины и режимов потребления электроэнергии и мощности, особенностей правил пользования электроэнергией потребителей электроэнергии принято делить на следующие основные группы: - промышленные и приравненные к ним; - коммунально-бытовые; - электрифицированный транспорт; - производственные сельскохозяйственные. Промышленные предприятия потребляют от 30 до 70% электроэнергии. Значительный разброс промышленного потребления определяется индустриальной развитостью и климатическими условиями различных стран; для индустриально развитых стран характерны количественные значения данного энергопотребления 50-70%. В данную группу входят предприятия машиностроения, черной и цветной металлургии, химической промышленности, стройматериалов и многих других производств. Суммарные установленные мощности электроприемников и соответствующие им электрические нагрузки промышленных предприятий изменяются весьма в широких пределах, ориентировочно от единиц мегаватт ( металлообработка, мелкое машиностроение и т.п.) до 300-500 МВт и более (крупное машиностроение, черная металлургия, электролиз алюминия и иных цветных металлов). Вместе с тем для основной части предприятий характерны мощности в пределах 30-150 МВт. Электроснабжение коммунально- бытовых потребителей. К данной группе относится широкий круг зданий, расположенных в жилых районах городов и населенных пунктов. Это – жилые здания, здания административно-управленческого назначения, учебные и научные заведения, магазины, здания здравоохранения, культурно-массового назначения, общественного питания и т.п. Установленная мощность электроприемников в жилых и общественных зданиях ( в зависимости от типа, количества этажей и жилых секций) составляет от 100-200 кВт до единиц мегаватт. Основными типами современных электроприемников зданий данного назначения являются приборы электрического освещения, нагревательные приборы (плиты, отопление, горячая вода), холодильники и морозильники, кондиционеры воздуха и различные приборы электронного типа (аудио-видеотехника, и т.п.). Преобладание ламп накаливания в осветительных установках и электроприемников нагревательного типа определяют высокие значения коэффициентов мощности на вводах в здания (0,9-0,95) в часы суточных максимумов нагрузок. Электроснабжение электрифицированного транспорта. Выпрямительные подстанции электротранспорта на постоянном токе (городской, промышленный, междугородний) и понижающие подстанции междугороднего электротранспорта на переменном токе питаются электроэнергией от электрических сетей электроэнергетических систем. Соответственно подстанции городского электротранспорта (трамвай, троллейбус, метрополитен) располагаются на территориях городов и являются потребителями электроэнергии городских сетей. Понижающие подстанции междугороднего транспорта, питающиеся непосредственно от электрических сетей энергосистем, как правило, также располагаются на территории или вблизи населенных пунктов. Понижающие подстанции междугороднего электротранспорта питаются по сетям 35-110-220 кВ. Системы электроснабжения электрического транспорта должны иметь высокую надежность электроснабжения. Электроснабжение сельского хозяйства. Система электроснабжения сельского хозяйства включает питание электроэнергией всех потребителей, располагающихся на территории сельскохозяйственных районов. Это - электроснабжение всех видов сельскохозяйственных производств, а также комплексов коммунально-бытовых потребителей сельских населенных пунктов. Примерами потребителей электроэнергии в данной области являются животноводческие, птицеводческие, зернообрабатывающие комплексы, зерно- и овощехранилища, парниковые установки, а также жилые здания, медицинские, торговые, культурно-образовательные учреждения и т.п. Электрические нагрузки отдельных потребителей изменяются в весьма широких пределах: от единиц киловатт для малоэтажных зданий до единиц мегаватт для животноводческих и зернообрабатывающих комплексов. Заключение Таким образом все составляющие энергоснабжения очень важны для качественного и бесперебойного обеспечения потребителей электроэнергий. Недостаточность знаний о распределении полученных мощностей и влиянии роста нагрузок на параметры энергетической системы не позволяют разработать комплекс энергопотребления, мероприятий по стабилизации режима который определяет происхождение негативных процессов, как в распределительных сетях низкого напряжения, так и в энергосистеме в целом. Поэтому нестоит останавливаться на достигнутом, необходимо изучать новые составляющие электроснабжения и улучшать имеющиеся на сегодняшний день. Список литературы Источники электроэнергии. [Электронный ресурс] – URL: https://cxem.net/electric/electric65.php (дата обращения: 20.05.2021). Электрические сети. [Электронный ресурс] – URL: https://extxe.com/16475/jelektricheskie-seti/ (дата обращения: 20.05.2021). Воздушные и кабельные линии электропередачи. [Электронный ресурс] – URL: https://extxe.com/21463/vozdushnye-i-kabelnye-linii-jelektroperedachi/ (дата обращения: 20.05.2021). Наумов И.В. Н 34 Электроснабжение: учебное пособие. – Благовещенск: Изд-во АМГУ, 2014.- 381 с. |