Главная страница

Физиология как наука


Скачать 1.94 Mb.
НазваниеФизиология как наука
Дата20.09.2020
Размер1.94 Mb.
Формат файлаdoc
Имя файлаfiza_ekzamen.doc
ТипДокументы
#138769
страница13 из 31
1   ...   9   10   11   12   13   14   15   16   ...   31

59. Системная гемодинамика…

Основные параметры, характеризующие системную ге­модинамику:

  1. Системное артериальное давление.

  2. Общее периферическое сопротивление.

  3. Сердечный выброс.

  4. Работа сердца.

  5. Венозный возврат крови к сердцу.

  6. Центральное венозное давление.

  7. Объем циркулирующей крови.

Системное артериальное давление.

Согласно законам гемодинамики количество жидкости (Q), протекающее через трубку, прямо пропорционально раз­ности давлений в начале (P1) и в конце (Р2) трубы и обратно пропорционально сопротивлению (R) току жидкости:



Если учесть, что давление в конце системы (Р2) в устьях полых вен, в правом предсердии (центральное венозное дав­ление) близко к нулю, то можно записать:



где Q - количество крови, изгнанное сердцем за 1 мин; Ρ - ве­личина среднего давления в аорте; R - величина общего пе­риферического сопротивления сосудов.

Из этого уравнения следует, что Ρ = Q · R, т.е. давление в устье аорты (можно обозначить как среднее артериальное давление) прямо пропорционально объему крови, выбрасы­ваемому за 1 мин (Q).

Это можно обозначить как МОК - минутный объем кровообращения - интегральная характеристика сердечного выброса в клинике и величина общего периферического со­противления.

Можно записать: сАД = МОК · ОПС.

Артериальное давление.

Это разновидность гидростатического давления. Выде­ляют отдельные виды артериального давления.

Виды артериального давления

  1. Систолическое давление - регистрируется в фазу систолы.

  2. Диастолическое давление - регистрируется в фазу диастолы.

  3. Пульсовое давление (СД - ДД), исчезает на уровне артериол, непульсирующий кровоток.

  4. Среднее динамическое давление - такая величина давления, которая бы при непульсирующем токе крови оказывала такой же гемодинамический эф­фект, который возникает реально при пульсирующем кровотоке, близка к среднеарифметической величине между систолическим и диастолическим давлением.

Факторы, определяющие АД:

  1. Факторы, влияющие на ОЦК.

  1. Факторы, влияющие на периферическое сопротивле­ние.

  2. Факторы, влияющие на МОК/УО, ЧСС, венозный возврат крови к сердцу.

Общее периферическое сопротивление сосудов (ОПС).

Под общим периферическим сопротивлением понимают сопротивление сосудистой

системы току крови. Описывается уравнением или (не для расчетов, а для демонстрации пропорциональности зависимостей), так как ОПС зависит от длины сосуда, его радиуса и вязкости крови, которые нередко изменяются независимо друг от друга.

При нормальном функционировании сердечно-сосуди­стой системы ОПС составляет 1200-1600 дин.с.см -5, при ги­пертонической болезни повышается до 2200-3000 дин.с см -5.

Наибольшее периферическое сопротивление создают артериолы (2-1010), тогда как аорта - 6.4-101. Артериолы об­ладают высокой чувствительностью к нервным и гумораль­ным влияниям.

Изменение периферического сопротивления прежде всею влияет на уровень диастолического давления.

Сердечный выброс.

Под сердечным выбросом понимают количество крови, выбрасываемой сердцем в сосуды. Для его характеристики в клинической практике используют два показателя:

-минутный объем кровообращения (МОК);

-ударный (систолический) объем крови.

Минутный объем кровообращения.

Характеризует общее количество крови, перекачи­ваемой левым или правым отделом сердца в течение 1 мин. В норме в покое - 4-6 л/мин.

Для нивелировки антропологических отличий рассчи­тывают сердечный индекс - МОК (площадь поверхности те­ла, в норме в покое сердечный индекс - 3-3,5 л/(мин*м2)).

Поскольку объем крови у человека 4-6 литров, то за 1 мин происходит полный кругооборот крови.

Важнейшими факторами, определяющими МОК, яв­ляется:

-ударный (систолический) объем крови (УО);

-частота сердечных сокращений (ЧСС);

-венозный возврат крови к сердцу.
По существу МОК = УО · ЧСС.

Ударный (систолический) объем крови - количество крови, которое нагнетается каждым желудочком в магист­ральный сосуд (аорту или легочную артерию) при одном со­кращении сердца.

В покое объем крови, выбрасываемой из желудочков, составляет от трети до половины от объема крови, находя­щейся в желудочках перед систолой, т.е. в конце диастолы.

В покое ударный объем составляет 70-100 мл крови.

Кровь, остающаяся в желудочках после систолы, - это резервный объем, КОС - конечносистолический объем.

При ненарушенной сократительной функции миокарда -по существенный резерв для срочной адаптации, который позволяет после начала действия раздражителя быстро увеличить ударный объем и, как следствие, МОК.

Это достигается через механизмы нервных и гумораль­ных влияний и частично за счет механизмов саморегуляции на сократительную функцию миокарда (инотропный эффект).

При ослаблении сердечной мышцы, снижении ее сократительных возможностей снижается ударный объем в покое, а также резко уменьшается возможность использования ре­зервного объема.

Изменение ударного объема (увеличение или уменьшение) прежде всего, ведет к изменению систолического давления, не­редко это сопровождается и изменениями пульсового давления.

Частота сердечных сокращений. В покое норма -60-80 раз в 1 мин. При срочной адаптации за счет нервных и гуморальных механизмов может увеличиваться в 2-3 раза (положительный хронотропный эффект), что существенно

изменяет МОК.

Венозный возврат крови к сердцу.

Это объем венозной крови, притекающий к сердцу по нижней и верхней полым венам. В покое венозный возврат 4-6 л/мин, причем на верхнюю полую вену приходится треть, а на нижнюю полую - две трети этого объема.

Факторы, участвующие в формировании венозного возврата.

Две группы факторов:

1 группа представлена факторами, которые объединя­ет общий термин «vis a tegro» - действую­щие сзади:

13% энергии, сообщенной потоку крови сердцем;

  • сокращение скелетной мускулатуры («мышечное сердце», «мышечная веноз­ная помпа»);

  • переход жидкости из ткани в кровь в ве­нозной части капилляров;

  • наличие клапанов в крупных венах (пре­пятствует обратному току крови);

  • констрикторные (сократительные) реак­ции венозных сосудов на нервные и гумо­ральные воздействия.

2 группа представлена факторами, которые объединя­ет общий термин «vis a fronte» - действую­щие спереди:

  • присасывающая функция грудной клетки. При вдохе отрицательное давление в
    плевральной полости увеличивается и это
    приводит к снижению центрального венозного давления (ЦВД), ускорению кровотока в венах;

  • присасывающая функция сердца. Осуще­ствляется за счет понижения давления в
    правом предсердии (ЦВД) до нуля в диа­столу.

Снижение ЦВД до 4 мм рт. ст. ведет усилению венозно­го возврата (далее не влияет), при ЦВД более 12 мм рт. ст. ве­нозный возврат крови к сердцу тормозится.

Изменение венозного давления на несколько миллимет­ров ртутного столба ведет к увеличению притока крови в 2-3 раза.

От венозного возврата крови к сердцу зависит наполне­ние кровью сердца в диастолу (конечнодиастолический объ­ем), а значит, это опосредованно влияет (особенно при нагруз­ках) на величину ударного объема (через изменение резерв­ного объема) и как следствие - на величину МОК. Эти изме­нения приводят к соответствующим изменениям АД.

Объем циркулирующей крови (ОЦК).

У мужчин он составляет в среднем 5,5 л (75-80 мл/кг), у женщин - 4,5 л (около 70 мл/кг). ОЦК делится в соотношении 1:1 на:

  1. непосредственно циркулирующую по сосудам,

  2. депонированную (селезенка, печень, легкие, подкож­ные сосудистые сплетения - депо крови).

Некоторая часть депонированной крови постоянно об­новляется. Под действием нервных и гуморальных факторов большая часть депонированной крови легко мобилизуется в кровоток.

При этом увеличивается венозный возврат, возрастает МОК, а также повышается АД, в большей степени диастолическое.

Факторы, определяющие объем циркулирующей крови.

  1. Факторы, регулирующие обмен воды и веществ меж­ду кровью и интерстициальным пространством.

  2. Факторы, регулирующую работу почек.

  3. Факторы, регулирующие объем эритроцитарной массы.


60. Методы оценки основных показателей гемодинамики…

Артериальное давление.

Артериальное давление делится на:

1. Центральное - измеряется кровавым (прямым) ме­тодом.

2. Боковое - измеряется некровавым (косвенным) ме­тодом:

а) пальпаторный (метод Рива-Роччи);

б) аускультативный (метод Короткова);

в) осциллографический метод - определяется коли­чественно среднее давление, а также систолическое и диастолическое давление.

В покое АД 120/80-110/70 мм рт.ст. Артериальное давление - пластичная константа. АД с возрастом повы­шается, есть возрастные нормы АД.

Суточное (холтеровское) мониторирование АД.

Специальные мониторы позволяют регистрировать АД в течение суток. АД измеряется в автоматическом режиме не менее 50 раз в сутки, днем 1 раз в 15 мин, ночью 1 раз в 30 мин. В зависимости от задач, от ощущений пациента времен­ные интервалы могут изменяться. Полученные результаты фиксирует и обрабатывает компьютер.

Суточный ритм изменения АД.

В норме максимальные значения АД регистрируются днем, затем постепенно снижаются, достигая минимума по­сле полуночи, и резко увеличиваются в ранние утренние часы после пробуждения.

Выраженность двухфазного ритма АД «день-ночь» оце­нивается суточным индексом, который в норме составляет 10-25%, т.е. средний уровень ночного АД не менее чем на 10% ниже среднего дневного АД.

Рассчитывают различные оценочные индексы. Метод позволяет оценить риск развития гипертонии, ее тяжесть, дать более точный прогноз развития болезни.

Объем циркулирующей крови. Метод разведения красителя.

Синька Эванса - высокомолекулярное соединение, она не выходит за пределы кровеносного русла, не проникает в эритроциты. Вводят известное количество (0,2 мг/кг) синьки и через несколько минут определяют концентрацию в плазме. Находят степень разведения и через него объем плазмы, оп­ределив гематокрит, рассчитывают ОЦК.

Эходопплеркардиография (ЭХОКГ), на основе ее по­казателей определяется конечнодиастолический и конечно-систолический объемы, рассчитывают ударный (систоличе­ский объем крови).

Минутный объем кровообращения.

МОК определяется расчетным путем: МОК = УО · ЧСС. Для стандартизации рассчитывают сердечный индекс:



Площадь тела определяется по специальной таблице.

Объемная и линейная скорости кровотока.

1. Ультразвуковая допплерография (УЗДГ) позво­ляет:

а) определить линейную скорость кровотока в от­дельных сосудах;

б) рассчитать объемную скорость кровотока;

в) оценить спектральные характеристики потока. Ла­минарный поток имеет параболический профиль, при турбулентном потоке профиль уплощается за счет увеличения скорости тока периферических слоев, за повреждением поток, который можно охарактеризовать термином «струя» - по оси узкий быстрый поток.

2. Метод электромагнитной флоурометрии (расходометрия).

Основан на принципе электромагнитной ин­дукции. Позволяет определить объемную скорость кровотока в различных сосудах, рассчитать линей­ную скорость кровотока.

3. Определение времени кругооборота крови.

Определяется с помощью радиоизотопа натрия и счетчика электронов. В норме время кругооборота крови 20-23 сек.
62. Регуляция системной гемодинамики…

Система мониторинга АД и ОЦК

В организме существует система слежения (монито­ринга) артериального давления и объема циркулирующей крови. Эта система обеспечивает постоянную информацию ЦНС об уровне этих показателей и является важнейшим звеном в функциональной системе, обеспечивающей гомеостатирование (поддержание на постоянном уровне) важнейших параметров внутренней среды.

Мониторинг осуществляется афферентными системами, нервные окончания которых способны воспринимать изме­нение давления, а некоторые из них - изменение объема цир­кулирующей крови. Обозначаются общим термином - барорецепторы.

Барорецепторы имеются во всех отделах сосудистого русла, в том числе и в сердце. Зоны скопления этих рецепто­ров обозначают термином рефлексогенные зоны. Важную роль в регуляции этих параметров играют некоторые 1) со­судистые рефлексогенные зоны: аортальная, каротидная, устьев полых вен и др. и 2) рефлексогенные зоны сердца.

Рефлексогенные зоны сердца - барорецепторы в серд­це, относятся к рецепторам растяжения.

В предсердиях левом и правом - два типа рецепторов: типы А и Б.

Тип А - импульсация возникает в период систолы предсердий, она несет информацию о степени растяжения предсердий кровью в момент систолы.

Тип Б - импульсация возникает в период диастолы предсердий, она информирует о степени наполнения кровью предсердий.

Желудочки.

В распределении рецепторов характерна асимметрия -значительно больше рецепторов в левом желудочке.

В миокарде их много в области верхушки сердца, во­круг выхода аорты и легочной артерии.

Они информируют о растяжении желудочков кровью, т.е. о степени наполнения.

Сосудистые рефлексогенные зоны.

Существуют три группы рецепторов:

Первая группа - барорецепторы, воспринимающие ритмические колебания артериального давления, обуслов­ленные систолой и диастолой.

Они как бы разбиты на подгруппы: одни воспринимают колебания давления от 0 до 20 мм рт.ст., другие - от 20 до 40 мм рт.ст., третьи - от 40 до 60 мм рт.ст. и т.д. до 240 мм. рт.ст.

Вторая группа - рецепторы, реагирующие на измене­ние статическую, неколеблющуюся нагрузку. Они в основ­ном представлены барорецепторами низкого давления, ко­торые расположены в устьях полых вен, в устье легочных вен, в правом и левом предсердии. Это - волюморецепторы. Они информируют об изменениях объема крови.

Третья группа - вибрационные рецепторы, воспри­нимают изменения давления, связанные с вихревым движе­ние крови (турбулентностью потока).

Все три группы рецепторов меняют импульсацию при изменении давления.

Механизмы гомеостатирования артериального дав­ления.

Импульсация от барорецепторов идет по афферентным волокнам в ЦНС, прежде всего к структурам продолговатого мозга.

Импульсация, возникающая при повышении АД, при­водит к:

а) торможению прессорной части сосудодвигательного центра и сопряженной активации его депрессорной части.

Это вызывает торможение симпатических цен­тров спинного мозга и как бы снимает симпатиче­ские влияния на сосуды и сердце, следовательно:

существенно уменьшается их тоническое влияние на кровеносные сосуды

  1. (артериолы);

  2. снижается общее периферическое сосуди­стое сопротивление (ОПС);

  3. тормозятся положительные хроно- и инотропные влияния на сердце, которые вызы­ вает симпатика;

б) к афферентной импульсации от барорецепторов, что сопряженно повышает тонус центров вагуса и оказывает на сердце отрицательный хроно- и инотропные эффекты;

  1. уменьшает систолический выброс;

  2. снижает частота сердцебиений;

  3. уменьшает МОК.

В результате двух факторов (а и б) снижается венозный возврат крови к сердцу.

Все это и нормализует АД.

При снижении (падении) давления - напротив:

  1. тормозится активность центров вагуса (снимается тормозящий вагусный эффект на сердце);

  2. активируются через соответствующие структуры (сосудодвигательный центр) спинальные симпати­ческие центры.

Это вызывает:

а) констрикцию (сужение) кровеносных сосудов (артериол);

б) повышение ОПС;

в) учащение сердцебиений;

г) усиление работы сердца;

д) увеличение венозного возврата крови к сердцу;

е) увеличение МОК.

Все это повышает снизившееся артериальное давление, нормализует его.

Объем циркулирующей крови (ОЦК).

У мужчин он составляет в среднем 5,5 л (75-80 мл/кг), у женщин - 4,5 л (около 70 мл/кг).

ОЦК делится в соотношении 1:1 на:

1) непосредственно циркулирующую по сосудам,

2) депонированную (селезенка, печень, легкие, подкож­ные сосудистые сплетения - депо крови).

Некоторая часть депонированной крови постоянно об­новляется. Под действием нервных и гуморальных факторов большая часть депонированной крови легко мобилизуется в кровоток.

При этом увеличивается венозный возврат, возрастает МОК, а также повышается АД, в большей степени диастолическое.

Факторы, определяющие объем циркулирующей крови.

1. Факторы, регулирующие обмен воды и веществ меж­ду кровью и интерстициальным пространством.

2. Факторы, регулирующую работу почек.

3. Факторы, регулирующие объем эритроцитарной массы.

Механизмы гомеостатирования ОЦК.

Увеличение объема циркулирующей крови (гиперволюмия).

При гиперволюмии возникает избыточное растяжение предсердий. Это вызывает:

рефлекторное расширение артериол большого круга кровообращения (рефлекс Бецольда-Яриша);

2) из предсердий выделяется большое количество ат-риопептида (предссрдного натрийуретического гормона), который, во-первых, снижает активность ренин-ангиотензин-альдостероновой системы, во вторых, тормозит выделение ренина, а это:

3) резко уменьшает образование ангиотензина, что вы­зывает:

- дилятацию сосудов;

- увеличение объема сосудистого русла;

- тормозит действие альдостерона в почках, а зна­чит:

• способствует выделению натрия и воды из орга­низма;

• уменьшает выделение вазопрессина (антидиу­ретического гормона) и тем самым способству­ет выведению воды из организма.

Все это нормализует объем циркулирующей крови и обеспечивает соответствие его объему кровеносного русла, т.е. нормализуется не только объем, но и АД.

Кроме того, увеличение объема циркулирующей крови вызывает дополнительное раздражение волюморецепторов устий полых вен. что приводит к увеличению частоты сердцебиений (рефлекс Бейнбриджа). Это ускоряет перекачива­ние крови из венозной системы в артериальную, разгружает левое сердце, предотвращает застой крови в малом круге

кровообращения.

При снижении объема циркулирующей крови (гиповолюмия) импульсация от волюморецепторов поступает в центральную нервную систему и достигает супраоптического и парафасцикулярных ядер гипоталамуса, их возбуждение запускает две цепочки.

Первая - гипоталамус - передняя доля гипофиза (уси­ление секреции АКТГ) - кора надпочечников (усиление сек­реции альдостерона) и как следствие:

1) усиление реабсорбции натрия, а следом и

2) усиление реабсорбции воды в почках.

3) ускорение всасывания воды в ЖКТ;

4) формирование чувства жажды;

5) увеличение потребления воды.

Вторая - гипоталамус - задняя доля гипофиза (усили­вается выработка вазопрессина (антидиуретического гормо­на)), увеличивается выделение вазопрессина задней долей гипофиза и, как следствие, усиление реабсорбции воды в почках.

И первое, и второе воздействия ведут к задержке во­ды в организме, к усилению ее потребления, а значит в конечном итоге к восстановлению объема циркулирую­щей крови.

Дополнительные механизмы.

1. Дополнительно снижение кровотока через почки активирует выброс ренина, который стимулируется образованием ангиотензина II, что, с одной стороны, еще более стимулирует выброс альдостерона корой надпочечников, задерживает воду в организме, с другой - вызывает констрикцию мелких сосудов. Это является одним из факторов обеспечения соот­ветствия объему циркулирующей крови и сосу­дов.

2. Снижение объема циркулирующей крови приводит к падению АД, и это включает механизмы гомео-статирования АД (учащение сердцебиений, сокра­щение сосудов и т.д.), которые направлены на то, чтобы привести в соответствие объем циркули­рующей крови и объем кровеносного русла.

Регуляция ОЦК через осморецепторы.

В связи с тем, что объем циркулирующей крови зависит от распределения воды между сосудами и интерстициальным пространством, изменение объема приводит к изменению осмотического давления. Важную роль в поддержании объема циркулирующей крови играет механизм, обеспечиваю­щий постоянство осмотического давления.

Увеличение (гиперосмолярность) или снижение (ги-поосмолярность) осмотического давления воспринимает­ся осморецепторами гипоталамуса. Нейроны супраоптического и паравентрикулярного ядер гипоталамуса обладают высокой осмочувствительностью (В этой зоне гематоэнцефа-лический барьер отсутствует).

Гиперосмолярность, возникающая при потере жидко­сти (уменьшении объема циркулирующей крови) стимули­рует выработку вазопрессина (антидеуретического гор­мона), он действует на V2-рецепторы в почках и

1) изолированно усиливает реабсорбцию воды,

2) задерживает воду в организме,

3) формирует чувство жажды и тем самым способствует

4) нормализации объема циркулирующей крови.

Гипоосмолярность, возникающая при избытке жидко­сти в организме, вызывает торможение выделения вазо­прессина (антидиуретического гормона) и, как следствие,

обильное мочеотделение.

Кроме того, первично на увеличение осмолярности мо­гут среагировать осморецепторы воротной вены - реакция на увеличение суммы солей (сразу после еды - жажда, увеличе­ние приема воды и т.д.) Реализация эффекта через гипотала­мус и стимуляцию выделения АДГ (вазопрессина).

При резком быстром снижении АД и уменьшении объема циркулирующей крови происходит:

1. Быстрое перераспределение жидкости между тка­нями и кровью (жидкость идет на уровне капилля­ров в кровеносное русло).

2. Компенсаторно усиливается венозный возврат крови к сердцу, для того чтобы сохранить хотя бы на минимальном уровне ударный объем, а также количе­ство крови, находящейся в артериальной системе.

3. Происходит пополнение циркулирующей фракции крови за счет мобилизации крови из депо крови.

4. Усиливается сброс крови через сосудистые шунты.

5. Компенсаторно увеличивается ОПС, что позволяет удержать АД на минимально необходимом уровне.

6. Минимизируется кровоток через органы.

7. Происходит централизация кровообращения.

63. Микроциркуляция…

Система микроциркуляции - артериолы, прекапиллярные сфинктеры, капилляры и венулы. Основная часть- капилляры.

Капилляры - диаметр-5-7 мкм/микрон/, длина-0,5-1,1 мм. Стенка капилляра состоит из одного слоя эндотелия и тонкой соединительнотканной базальной мембраны.

В зависимости от ультраструктуры стенки выделяют три типа капилляров: соматический, висцеральный и синусоидный.

Стенка капилляров соматического типа образована сплошным слоем эндотелиальных клеток, в мембране которых имеется огромное количество мельчайших пор, диаметром 4-5 нм, этот тип капилляров характерен для кожи, скелетных и гладких мышц, миокарда, легких. Стенки таких капилляров хорошо пропускают воду, растворенные в ней кристаллоиды, малопроницаема для белков.

В капиллярах висцерального типа в мембранах эндотелия имеются фенестры- «окошечки», которые представляют собой пронизывающие цитоплазму отверстия, диаметром40-60 нм, образованные тончайшей мембраной. Такой тип капилляров в почках, кишечнике, эндокринных железах, т.е. в органах в которых всасывается большое количество воды с растворенными в ней веществами.

В капиллярах синусоидного типа имеют прерывистую стенку с большими просветами. Эндотелиальные клетки отделены друг от друга щелями, в области которых базальная мембрана отсутствует. Они находятся в селезенке, печени, костном мозге. Обеспечивают высокую скорость проницаемости для жидкости, а так же для белков и клеток крови/к механизму гемолиза/.

Поверхность одного капилляра 14000 мкм2/общая эффективная обменная поверхность/, общая длина всех капилляров у человека более 100 000 км/одного-1 мм/, рассчитайте приблизительно общую поверхность капилляра, через которую идет обмен веществ между кровью и тканями.

Следует иметь ввиду, что все капилляры можно разделить на магистральные- они образуют кратчайший путь для движения крои по микроциркуляторному руслу и боковые капилляры, которые отходят от артериального конца магистральных капилляров и впадают в его венозный конец.

Боковые капилляры образуют венозную сеть. Диаметр и скорость кровотока в них ниже,чем в магистральных. Проходя через большинство из них, эритроциты изменяют свою форму/деформабильность эритроцитов/. Их функционирование определяется режимом работы магистральных капилляров.

Между органами капилляры распределены неравномерно, больше капилляров в органах с высоким уровнем метаболизма. Их плотность/число капилляров/1 мм2 поперечного сечения/ в сердце в 2 раза больше, чем в скелетных мышцах.

Кроме того, капилляры можно разделить на функционирующие/открытые/ и резерные/закрытые/. В покое функционируют 20-30% капилляров/дежурные капилляры/, в работающих органах количество функционирующих капилляров увеличивается в 2-3 раза.

Скорость кровотока в капиллярах- 0,5-1,0 мм/с. Низкая скорость кровотока в капиллярах и огромная их поверхность создает необходимые условия для обмена веществ между кровью и тканями.

К ровяное давление в капиллярах: в артериальном конце 30 – 35 мм.рт.ст., в венозном-10-12 мм.рт.ст. Это в большинстве капилляров. В ряде сосудистых регионом имеются особенности. В капиллярах почечных клубочков – 65-70 мм.рт.ст./это обеспечивает высокий уровень фильтрации/, в капиллярах, оплетающих почечные канальцы-14-18 мм/ (канальцы интестинальная ткань почки оплетающие капилляры). В легочных капиллярах гидростатическое давление составляет 6 мм.рт.ст.

Транскапиллярный обмен осуществляется с помощью активных и пассивных механизмов. В основе пассивного транспорта лежит фильтрационное давление (ФД). Согласно модели транскапиллярного обмена Старлинга, величина ФД и его вектор/направление/ зависят от соотношения между гидростатическим давлением(ГД) и онкотическим давлением(ОД).

В артериальном конце капилляра величина гидростатического давления крови (ГДкр) составляет 30 -35 мм.рт.ст., а онкотического давления крови(ОДкр) –18-20 мм.рт. ст. Определенный вклад в окончательное формирование ФД вносят гидростатическое давления в тканях(ГДтк) - -3- -9 мм.рт.ст./отрицательное/ и онкотическое давление в тканях(ОДтк)- 4,5- 5,0 мм.рт. ст. Фильтрационное давление расчитывается по формуле ФД=ГД-ОД, а точнее ФД=(ГДкр- ГДтк)-(ОКкр- ОДтк)

На артериальном конце капилляра ФД=(30-(-5)-(20-5)=20 (мм рт. ст.)

Фильтрация идет по направлению из капилляра в ткань.

На середине капилляра ГДкр становится равным ОДкр.

К венозному концу капилляра ГДкр составляет 10-12 мм.рт.ст. ГДтк приближается к 0. ОДкр в венозном конце капилляра 22-23 мм.рт.ст./увеличивается за счет всасывания воды/, а ОДтк составляет 5,0-5,5 мм.рт.ст.

На венозном конце капилляра ФД=(10-0)-(22,5-5,5)=-7 (мм. рт. ст.), то есть жидкость с растворимым в ней веществами возвращается из ткани в капилляры.

Объемную скорость транскапиллярного обмена(мл/мин) можно представить как

Kфильт/(ГДкр-ГДтк) - Косм(ОДкр-ОДтк)/, где Кфильт -коэффициент капиллярной фильтрации, отражающий площадь обменной поверхности/количество функционирующих капилляров/ и проницаемость капиллярной стенки для жидкости, Косм- осмотический коэффициент, отражающий реальную проницаемость мембраны для электролитов и белков.

Отклонение от нормы от любого из параметров сопровождается нарушением транскапиллярного обмена. Чаще всего это приводит к появлению отеков:

1.Гидростатический отек/за счет повышения гидростатического давление.

2.Гипоонкотический отек/за счет снижения онкотического давления/

Облегченный и активный транспорт в капиллярах

Происходит по закономерностям изложенным в лекции посвященной транспорту в цитоплазматических мембранах.

Замедление и остановка кровотока в капиллярах или/и снижение гидростатического давления ниже критического уровня обозначается термином- блок микроциркуляции.
64. Особенности гемодинамики в различных сосудистых ре­гионах. Легочное кровообращение…

Легочное кровообращение (малый круг кровообращения)

МОК-5-6 литров, низкое ОПС в 8-10 раз меньше, чем в большом круге, зона низкого кровяного давления/ в легочных артериях 15-25 мм.рт.ст., в легочных венах 6-8 мм.рт.ст./

1. Основная задача - обогащение крови кислородом и выведение СО2.

2. На эндотелии капилляров - ферменты:

а). кининаза-2 - разрушает брадикинин, образовавшийся в венозной системе.

б). ангиотезинконвертаза - превращает ангиотензин-1 в ангиотензин-2 (способен существенно повышать артериальное давление).

3. Очень низкий тонус легочных сосудов, т.е. низкое сопротивление кровотоку (в 10 раз меньше, чем в большом круге, отсюда и низкое гидростатическое давление в малом круге).

4. Большая растяжимость сосудистого русла. Это позволяет не изменять кровяное давление в малом круге при физ. нагрузке, когда кровоток увеличивается в 3-5 раз и выступать в роли кровяного депо.

5. Большая плотность капилляров (на единицу объема ткани).

6. Низкая проницаемость капилляров легких для воды вследствие высокой плотности расположения эндотелиальных клеток.

7. Неравномерная перфузия верхних и нижних долей легких в вертикальном положении./обусловлена низким давлением с системе малого круга/

8. Кровоток в легких имеет фазных характер зависит от вдоха и выдоха. Во время вдоха кровеносные сосуды легких расширяются, спиралевидные капилляры раскручиваются, объем микроциркуляторного русла увеличивается, периферическое сопротивление снижается, кровоток увеличивается, во время выдоха кровоток снижается

9. Мускулатура сосудов легких при снижении pO2 и повышении pCO2 в альвеолярном воздухе сокращается./метаболическая регуляция/.

10. В ответ на действие гистамина, брадикинина/ дистантное влияние/ гладкая мускулатура легочных сосудов также сокращается/вазоконстриктор ное действие/, т.е. эти вещества в малом круге оказывают противоположное действие, чем в большом круге кровообращения. Ангиотензин на сосуды малого круга оказывает выраженное сосудосуживающие действие. Действие катехоламинов слабо выражено.

11. Неврогенные влияния на легочной кровоток незначительны. Слабое сосудосуживающее влияние симпатической нервной системы. Влияние парасимпатической нервной системы отсутствуют.

12. При повышении давления в малом круге кровообращения замедляется работа сердца и расширяются сосуды большого КК./Важнейшая сосудистая рефлексогенная зона/, может возникнуть отек легких.

Кровообращение в коронарных сосудах

В покое коронарный кровоток составляет 200-250 мл/мин(5% от МОК)

Кровоток в сердце при мышечной нагрузке возрастает в 5-7 раз.(функциональная гиперемия).

Особенности сосудистого русла и кровотока:

-Хорошо развитая капиллярная сеть

-Малое диффузное расстояние/от капилляра до кардиомиоцита /,т.к. см. пункт 2

-Высокая растяжимость кровеносного русла

-Высокий базальный тонус коронарных сосудов.

-Кровоснабжение сердца осуществляется в основном в период диастолы./кровоток в систолу снижен/

-Высокая экстракция кислорода миоглобином кардиомиоцитов /до 75%/

-Высокая объемная скорость кровотока

-Фазное изменение линейной скорости кровотока/ускорение в систолу и замедление в диастолу/

Регуляция

Основная цель- обеспечить соответсвие кровотока потребностям сердца в процессе срочной и долговременной адаптации.

Ауторегуляция /миогенная/ регуляция

Высокий базальный тонус, высокая растяжимость коронарного русла позволяют за счет саморегуляции обеспечить относительную независимость коронарного кровотока при изменениях АД от 70 до 160 мм.рт. ст.

Нервная регуляция

Коронарные сосуды содержат и альфа- и бета-адренорецепторы.

Симпатические влияние вызывают в одном случаи(при активации бета-адренорецепторов) вызывают дилятацию /расширение/ коронарных сосудов и усиление кровоток в коронарных сосудах (при мышечной работе, положительных эмоциях, отрицательных стенических эмоциях/гнев/), в других случаях(при активации альфа-адренорецепторов) они вызывают вазоконстрикцию и уменьшение кровотока.

Направленность реакции в конкретной ситуации зависит 1)от соотношения количества альфа и бета адренорецепторов в коронарных сосудахх у субъекта 2) от большей предуготовленности /чувствительности/ одного из вида рецепторов.

Прямые холинэргические влияния на кровоток слабо выражены/слабая вазодилятация/.

Гуморальная регуляция

Местная регуляция/метаболическая/ регуляция

Наиболее чувствительны коронарные сосуды к изменению pO2 , концентрации аденазина.

-Снижение pO2 приводит к расширению коронарных сосудов

-«Аденазиновая» теория. Аденазин блокирует кальциевые каналы в цитоплазматической мембране гладких мышц сосудистой стенки и за счет этого вызывает расширение коронарных сосудов.

Кроме того расширение коронарных сосудов вызывает, /при действии в месте образования и выделения/ увеличение содержания следующих метаболитов:

1)ионов калия, 2) ионов водорода, 3)молочной кислоты,4) СО2 , NO-оксид азота,

Местные сосудосуживающие факторы неизвестны

Дистантная регуляция специфическими метаболитами

Гистамин, кинины, ацетилхолин, простагландин Е расширяют коронарные сосуды. Адреналин и норадреналин взаимодействуя с бета- адренорецепто рами вызывают дилятацию коронарных сосудов.

Взаимодействие катехоламинов с альфа-адренорецепторами вызывает вазоконстрикцию коронарных сосудов. Большие дозы ангиотензина и вазопрессина так же вызывает сужение коронарных сосудов.

Мозговое кровообращение

В мозге

1.протекают энергоемкие процессы, требующие большого потребления глюкозы

2.нет субстрата для анаэробного окисления

3.отсутствуют запасы О2

4.потребляет 20% О2 и 17% глюкозы от поступивших во внутреннюю среду организма при собственной массе 2% от веса тела

5. Т.к. мозг - в черепной коробке, его ткань несжимаема, следовательно объем внутричерепных сосудов, а значит и количество крови в них, остается практически постоянным.

6.Капилляры мозга не проницаемы для большинства веществ, циркулирующих в кровотоке (ГЭБ). Эндотелиальные клетки наслаиваются друг на друга, пор почти нет, транспорт через них ограничен и строго контролируется ферментами. Растворимые в липидах вещества - проходят. Водорастворимые - не проходят (в том числе - лекарства, яды, токсины).

Через 5-7 с. после прекращения кровообращения в мозге человек теряет сознание. При ишемии мозга более 5 мин происходит блокада микроциркуляции в мозге из-за необратимых изменений в эндотелии сосудов, а так же отек глиальных клеток.

Эти особенности процессов в мозге требуют для его нормального функционирования устойчивого высоко интенсивного процесса кровоснабжения.

Кровоток в мозге в покое составляет 750 мл/мин(15% от МОК)

Регуляция

Ауторегуляция/миогенная/ регуляция

Повышение системного АД приводит к повышению тонуса миоцитов и сужению артерий, снижение АД- к уменьшению тонуса и расширению артерий. За счет этого механизма ауторегуляции поддерживается стабильный мозговой кровоток при изменениях системного АД в пределах 60-180 мм.рт.ст.

Гуморальная регуляция

Осуществляется за счет прямого влияния неспецифических и специфических метаболитов.

Общий мозговой кровоток

1.Мощным регулятором общего мозгового кровотока является напряжение СО2 в артериальной крови, и как следствие в межклеточной жидкости. Изменение напряжения СО2 на 1 мм.рт.ст. изменяет мозговой кровоток на 6%

Возрастание напряжения СО2 /гиперкапния/ сопровождается расширением мозговых сосудов, а снижение ее/гипокапния/-их сокращением.

Напряжение О2 не является фактором физиологической реляции мозгового кровообращения.

2. Важнейшие из гуморальных регуляторов

2.1 внутрисосудистые вазоконстрикторы: вазопрессин, ангиотензин, простагландины F, катехоламины

2.2.внутрисосудистые дилятаторы: ацетилхолин, гистамин, брадикинин.

Перераспределение крови между областями мозга

Локальное повышение функциональной активности нейронов приводит к функциональной гиперемии этой зоны мозга.

Механизмы перераспределения

Регуляция по быстрому контуру.

В зоне активности в межклеточной жидкости быстро в доли секунды повышается концентрация калия и как следствие локальное расширение сосудов и увеличение кровотока в этой зоне

Регуляция по медленному контуру/относительно медленная/

Интенсивна работающие нейроны достаточно быстро повышают потребление О2 и выделение СО2. Повышение напряжение СО2 приводит к расширению артерий и увеличению кровотока.

Нейрогенная регуляция

Менее эффективна чем гуморальная., так как конечный эффект зависит в первую очередь от рассмотренных выше факторов.

Среди нервных волокон влияющих на тонус мозговых сосудов выделяются адренэргические./альфа- и бета- адренорецпторы/(2 противопо ложных эффекта), холинэргические /сосудорасширяющие/, пептидэргические /сосудорасширяющие/ -медиатор-вазоинтестинальный пептид, серотонин эргические /сосудосуживающие/.

1   ...   9   10   11   12   13   14   15   16   ...   31


написать администратору сайта