Формула Байеса Цели урока образовательные изучить формулу Байеса
Скачать 218.46 Kb.
|
Формула БайесаЦели урока образовательные: изучить формулу Байеса;научить решать задачи на нахождение вероятностей сложных событий;научить применять понятия теории вероятностей в реальных ситуациях. |
способствовать развитию знаний, пробудить у учащихся интерес к изучению предпосылок открытия новых понятий;
формировать у учащихся научное мировоззрение;
продолжать формировать умение самостоятельно работать с различными источниками информации, обобщать материал;
развивать интеллектуальные и творческие способности учащихся.
развивающие: способствовать развитию общения как метода научного познания, аналитического мышления, смысловой памяти, внимания; умения работать с дополнительной литературой;
развитию навыков исследовательской деятельности.
Байеса'> Формула Байеса
Рассмотрим событие А, которое может наступить лишь при появления одного из несовместных событий В1, В2, В3,…,Вn , образующих полную группу. Если событие А уже произошло, то вероятность событий В1, В2, В3,…,Вn можно определить по формуле Байеса
Задача 1 - Два автомата производят одинаковые детали. Производительность первого автомата в два раза больше производительности второго. Вероятность производства отличной детали у первого автомата равна 0,60, а у второго 0,84. Наудачу взятая для проверки деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение
Событие А - деталь отличного качества.
Гипотезы: В1 – деталь произведена первым автоматом, ,
так как этот автомат производит деталей в два раза больше второго. В2 – деталь изготовлена вторым автоматом,
Условные вероятности того, что деталь произведена первым автоматом,
а вторым Вероятность того, что наудачу взятая деталь окажется отличного качества, вычисляем по формуле полной вероятности: .
Решение Вероятность того, что взятая деталь изготовлена первым автоматом, вычисляется по формуле Байеса:
Задача 2
- Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе, как 4:1. Вероятность того, что будет заправляться грузовая машина, равна 0,2; для легковой машины эта вероятность равна 0,3. К бензоколонке подъезжала для заправки машина. Найти вероятность того, что эта машина грузовая
Решение
Cобытие A - машина заехала на заправку.
Гипотезы: H1 - это грузовая машина, H2 - это легковая машина, Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H1 - тарелку разбила 1-я студентка, P(H1)=0,03 H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
способствовать развитию общения как метода научного познания, аналитического мышления, смысловой памяти, внимания; умения работать с дополнительной литературой;
развитию навыков исследовательской деятельности.
- Два автомата производят одинаковые детали. Производительность первого автомата в два раза больше производительности второго. Вероятность производства отличной детали у первого автомата равна 0,60, а у второго 0,84. Наудачу взятая для проверки деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение
Событие А - деталь отличного качества.
Гипотезы: В1 – деталь произведена первым автоматом, ,
так как этот автомат производит деталей в два раза больше второго. В2 – деталь изготовлена вторым автоматом,
Условные вероятности того, что деталь произведена первым автоматом,
а вторым Вероятность того, что наудачу взятая деталь окажется отличного качества, вычисляем по формуле полной вероятности: .
Решение Вероятность того, что взятая деталь изготовлена первым автоматом, вычисляется по формуле Байеса:
Задача 2
- Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе, как 4:1. Вероятность того, что будет заправляться грузовая машина, равна 0,2; для легковой машины эта вероятность равна 0,3. К бензоколонке подъезжала для заправки машина. Найти вероятность того, что эта машина грузовая
Решение
Cобытие A - машина заехала на заправку.
Гипотезы: H1 - это грузовая машина, H2 - это легковая машина, Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H1 - тарелку разбила 1-я студентка, P(H1)=0,03 H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
В1 – деталь произведена первым автоматом, ,
В2 – деталь изготовлена вторым автоматом,
Условные вероятности того, что деталь произведена первым автоматом,
Вероятность того, что наудачу взятая деталь окажется отличного качества, вычисляем по формуле полной вероятности: .
Решение Вероятность того, что взятая деталь изготовлена первым автоматом, вычисляется по формуле Байеса:
Задача 2
- Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе, как 4:1. Вероятность того, что будет заправляться грузовая машина, равна 0,2; для легковой машины эта вероятность равна 0,3. К бензоколонке подъезжала для заправки машина. Найти вероятность того, что эта машина грузовая
Решение
Cобытие A - машина заехала на заправку.
Гипотезы: H1 - это грузовая машина, H2 - это легковая машина, Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H1 - тарелку разбила 1-я студентка, P(H1)=0,03 H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
Решение Вероятность того, что взятая деталь изготовлена первым автоматом, вычисляется по формуле Байеса:
Задача 2
- Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе, как 4:1. Вероятность того, что будет заправляться грузовая машина, равна 0,2; для легковой машины эта вероятность равна 0,3. К бензоколонке подъезжала для заправки машина. Найти вероятность того, что эта машина грузовая
Решение
Cобытие A - машина заехала на заправку.
Гипотезы: H1 - это грузовая машина, H2 - это легковая машина, Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H1 - тарелку разбила 1-я студентка, P(H1)=0,03 H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
Вероятность того, что взятая деталь изготовлена первым автоматом, вычисляется по формуле Байеса:
Задача 2
- Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе, как 4:1. Вероятность того, что будет заправляться грузовая машина, равна 0,2; для легковой машины эта вероятность равна 0,3. К бензоколонке подъезжала для заправки машина. Найти вероятность того, что эта машина грузовая
Решение
Cобытие A - машина заехала на заправку.
Гипотезы: H1 - это грузовая машина, H2 - это легковая машина, Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H1 - тарелку разбила 1-я студентка, P(H1)=0,03 H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
Решение
Cобытие A - машина заехала на заправку.
Гипотезы: H1 - это грузовая машина, H2 - это легковая машина, Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H1 - тарелку разбила 1-я студентка, P(H1)=0,03 H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H1 - тарелку разбила 1-я студентка, P(H1)=0,03 H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
Условные вероятности:
По формуле полной вероятности вероятность того, что случайным образом выбранная из общего потока машина зарулит на бензоколонку
Ответ: 0,727
Задача 3
- Три студентки живут в одной комнате и по очереди моют посуду. Вероятность разбить тарелку для первой студентки равна 0.03, для второй 0.01, для третьей - 0.04. На кухне раздался звон разбитой тарелки. Найти вероятность того, что третья студентка мыла тарелку.
Решение
Событие A - разбили тарелку.
Гипотезы:
H2 - тарелку разбила 2-я студентка, P(H2)=0,01 H3 - тарелку разбила 3-я студентка, P(H3)=0,04 (гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
(гипотезы Н1,Н2,Н3 составляют полную группу событий) Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка
Искомую вероятность найдём по формуле Байеса (переоценка вероятности события H3
Ответ: 0,5
Решить Задачи
- 1. На контроль поступают одинаковые блюда, изготовленные двумя поварами. Производительность первого повара вдвое больше, чем второго. Процент брака у первого 0.08, а у второго - 0.06. Проверенное блюдо не удовлетворяет требованиям контроля. Найти вероятность того, что блюдо приготовлено первым поваро
- 2. На хим. заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация звуковой сигнал срабатывает с вероятностью 0.95, звуковой сигнал может срабатывать случайно и без аварийной ситуации с вероятностью 0.05, реальная вероятность аварийной ситуации равна 0.004. Предположим, звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации ?
Решить Задачи
- 3. Устройство состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна 0.3, второго - 0.6. Найдите вероятность того, что не отказал первый элемент, если известно, что какой-то один из элементов отказал ?
- 4. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0.8, для второго - 0.4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что в мишень попал второй стрелок.
Домашнее задание
1. Три орудия сделали залп по цели. Два орудия попали в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель для орудий соответственно равны 0.1, 0.9, 0.95.
- 2. Каждое изделие в партии изготовлено на одном из двух станков. Вероятность брака на одном станке равна 0.04, на другом - 0.08. Найти вероятность того, что из 10 изделий, изготовленных по 5 на каждом станке, будет не менее 9 годных.
Ответы: 1. 2.
Условные вероятности (кто мыл посуду в момент катастрофы):
Решение
По формуле полной вероятности вероятность того, что в процессе мытья посуды будет разбита тарелка