Главная страница
Навигация по странице:

  • Виды фотометрических измерений

  • Общие методы фотометрии.

  • Визуальная фотометрия

  • Физическая фотометрия

  • Теория фотометрического метода

  • Закон Бугера-Ламберта

  • Закон Бугера-Ламберта- Бэра

  • Методы фотометрического анализа

  • Доклад по фотометрии. Фотометрия


    Скачать 35.95 Kb.
    НазваниеФотометрия
    Дата20.05.2020
    Размер35.95 Kb.
    Формат файлаdocx
    Имя файлаДоклад по фотометрии.docx
    ТипДокументы
    #124175



    Фотометрия, раздел прикладной физики, занимающийся измерениями света. С точки зрения фотометрии, свет – это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Такое ощущение вызывает излучение с длинами волн от

    0,38 до 0,78 мкм, причем самым ярким представляется излучение с длиной волны ок. 0,555 мкм (желто-зеленого цвета).

    Виды фотометрических измерений. Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами.

    Общие методы фотометрии. Существуют два общих метода фотометрии: 1) визуальная фотометрия, в которой при выравнивании механическими или оптическими средствами яркости двух полей сравнения используется способность человеческого глаза ощущать различия в яркости; 2) физическая фотометрия, в которой для сравнения двух источников света используются различные приемники света иного рода – вакуумные фотоэлементы, полупроводниковые фотодиоды и т.д. При обоих методах для того, чтобы результаты имели универсальную значимость, условия наблюдения (или работы приборов) должны быть такими, чтобы фотометр реагировал на разные длины волн в точном соответствии со «стандартным наблюдателем» МКО. Важно также, чтобы световой выход лампы не изменялся в ходе измерений.

    Визуальная фотометрия. История визуальной фотометрии начинается с П.Бугера (1698–1758), замечательного ученого, который в 1729 изобрел способ сравнения двух потоков света и сформулировал почти все основные принципы фотометрии. И.Ламберт (1728–1777) далее систематизировал теорию фотометрии, и дальнейшее ее развитие шло в основном по линии совершенствования методов. В настоящее время визуальная фотометрия применяется ограниченно – при измерении весьма слабых световых потоков, когда трудно однозначно интерпретировать результаты физической фотометрии.

    Физическая фотометрия. Начало физической фотометрии положили Ю.Эльстер и Г.Гейтель, открывшие в 1889 фотоэффект. В 1908 Ш.Фери разработал электрический фотометр, чувствительность которого к разным длинам волн была близка к чувствительности человеческого глаза. Но лишь в 1930-х годах, после усовершенствования вакуумных фотоэлементов и изобретения селенового фотодиода, физическая (электрическая) фотометрия стала широко применяемым методом, особенно в промышленных лабораториях.

    Теория фотометрического метода

    Метод анализа, основанный на переведении определяемого компонента в поглощающее свет соединение с последующим определением количества этого компонента путём измерения светопоглощения раствора полученного соединения, называется фотометрическим.

    По окраске растворов окрашенных веществ можно определять концентрацию того или иного компонента или визуально, или при помощи фотоэлементов – приборов, превращающих световую энергию в электрическую. В соответствии с этим различают фотометрический визуальный метод анализа, называемый часто колориметрическим, и метод анализа с применением фотоэлементов – собственно фотометрический метод анализа. Фотометрический метод является объективным методом, поскольку результаты его не зависят от способностей наблюдателя, в отличие от результатов колориметрического – субъективного метода.

    Фотометрический метод анализа – один из самых старых и распространённых методов физико-химического анализа. Его распространению способствовали сравнительная простота необходимого оборудования, особенно для визуальных методов, высокая чувствительность и возможность применения для определения почти всех элементов периодической системы и большого количества органических веществ. Открытие всё новых и новых реагентов, образующих окрашенные соединения с неорганическими ионами и органическими веществами, делает в настоящее время применение этого метода почти неограниченным.

    Фотометрический метод анализа может применяться для большого диапазона определяемых концентраций. Его используют как для определения основных компонентов различных сложных технических объектов с содержанием до 20 -30% определяемого компонента, так и для определения микропримесей в этих объектах при содержании их до 10-3 – 10-4 %.

    Очень ценно использование фотометрических методов для решения многих теоретических вопросов аналитической и физической химии.

    Способность химического соединения, неорганического иона и органической группировки поглощать лучистую энергию определённых длин волн используется в фотометрическом анализе. Среди неорганических веществ сравнительно немного соединений, обладающих собственной окраской: это соединения марганца (VII), хрома (VI), меди (II) и др.

    Каждое вещество обладает способностью поглощать лучистую энергию в виде квантов энергии, соответствующих определённым длинам волн. Линии или полосы поглощения располагаются в ультрафиолетовой, видимой или инфракрасной областях спектра. Эти полосы и линии могут быть использованы для качественного и количественного фотометрического анализа.

    Закон Бугера-Ламберта

    Два раствора одного и того же соединения различной концентрации одинаковы по оттенкам цвета, но различаются по интенсивности окраски. Интенсивность окраски измеряют по ослаблению энергии светового потока определённой длины волны. Интенсивность входящего светового потока обозначают обычно I0 , а интенсивность ослабленного поглощением светового потока через I.

    Величину поглощения света можно выражать разницей этих двух величин, или их отношением. Для различных фотометрических исследований наиболее удобно выражать интенсивность светопоглощения величиной:

    Эта величина называется оптической плотностью и постоянно применяется в различных расчётах. Удобство применения именно этой функции обусловлено прямой пропорциональностью между оптической плотностью и концентрацией, а также толщиной слоя раствора окрашенного соединения.

    Из рассматриваемого закона вытекает:

    отношение интенсивности светового потока, прошедшего через слой раствора, к интенсивности падающего светового потока не зависит от абсолютной интенсивности падающего светового потока;

    если толщина слоя раствора увеличивается в арифметической прогрессии, интенсивность светового потока, прошедшего через него, уменьшается в геометрической прогрессии.

    Закон Бугера-Ламберта- Бэра

    Ослабление интенсивности светового потока при прохождении через раствор зависит от количества поглощающих свет центров на пути светового потока.



    Эта зависимость называется законом Бугера – Ламберта – Бэра и применяется при различных расчётах в фотометрическом анализе. Если концентрация С выражена в молях на литр, а толщина слоя b – в сантиметрах, то коэффициент называют молярным коэффициентом поглощения; он представляет собой постоянную величину, зависящую от длины волны падающего света, природы растворённого вещества, температуры раствора, и соответствует светопоглощению молярного раствора анализируемого вещества.

    Также нужно сказать, что источниками ошибок при фотометрии могут быть отклонения от закона Бугера – Ламберта – Бэра и особенности возникающей окраски. Отклонения от закона Бугера – Ламберта – Бэра могут быть вызваны и посторонними веществами, присутствующими в растворе.

    Методы фотометрического анализа

    Определение концентрации окрашенного вещества фотометрическим методом практически сводится к определению интенсивности светового потока до и после поглощающего раствора (соответственно I0 и It ). Абсолютное определение интенсивности этих световых потоков возможно только при помощи фотоэлементов. При определении по абсолютной интенсивности светового потока источник света, кювета с исследуемым раствором и приёмник света располагаются на одной прямой. Это так называемый метод однолучевой фотометрии.

    Условия определения концентрации вещества этим методом также описываются законом Бугера – Ламберта – Бэра:



    Метод однолучевой фотометрии очень прост, но требует постоянства начального светового потока. В фотометрическом анализе однолучевая фотометрия используется в методе пропорциональных отклонений.

    При измерении по методу сравнения интенсивностей световой поток от источника света пропускают через две параллельные кюветы, содержащие сравниваемые растворы; лучи, прошедшие через кюветы, попадают на самостоятельные приёмники света. Это так называемый метод двулучевой фотометрии. Сравнение интенсивности световых потоков можно проводить и визуально, человеческий глаз способен улавливать разницу в интенсивностях окрасок в пределах 10 – 15%.

    В фотометрическом анализе применяются реакции различных типов. Для определения неорганических компонентов чаще всего используют реакции образования (иногда - разрушения) окрашенных комплексных соединений. Большинство металлов и неметаллов способны к образованию различных комплексных соединений, в том числе окрашенных, или, во всяком случае, способны к взаимодействию с окрашенными комплексами. Поэтому область применения фотометрических методов анализа практически не имеет ограничений; в настоящее время известны достаточно простые фотометрические методы определения почти всех элементов или их соединений. Для фотометрического определения органических компонентов чаще всего используют реакции синтеза окрашенных соединений. Реакции синтеза удобно применять и для определения некоторых неорганических компонентов, например сульфидов или нитритов. Значительно реже применяют в фотометрическом анализе реакции окисления – восстановления. Ряд фотометрических методов основан на каталитическом эффекте. Чувствительность фотометрических методов, основанных на обычных реакциях образования окрашенных соединений, имеет естественный предел. Поэтому если необходимо значительное повышение чувствительности, определяемый компонент вводят в некоторую систему в качестве катализатора. В результате каждая частица определяемого компонента приводит к образованию большого количества частиц продукта реакции.

    Таким образом, центральное место в фотометрическом анализе занимает химическая реакция. Время, затрачиваемое на анализ, чувствительность метода, его точность и избирательность зависят от выбора химической реакции и оптимальных условий образования окрашенного соединения. Правильное измерение светопоглощения имеет большое значение. Однако выбор того или другого способа измерения поглощения света обусловлен, как правило, не особенностями анализируемого материала или выбранной реакцией, а общими условиями работы той или другой лаборатории.

    Приборы:

    поглощение света измеряют при помощи приборов с фотоэлементом. Такие приборы называют фотоэлектроколориметрами (ФЭК). В отличии от визуального способа, с помощью ФЭК можно непосредственно измерить ослабление интенсивности первоначального светового потока. Поэтому нет необходимости каждый раз готовить стандартный раствор. Обычно при работе с ФЭК перед выполнением анализов составляют калибровочный график по серии стандартных растворов. Калибровочным графиком пользуются для многих определений, что очень удобно для массовых однотипных анализов. Если поглощение света измеряют с помощью ФЭК, такой способ называют фотоколориметрическим анализом.

    Наиболее совершенным, хотя и более сложным прибором является спектрофотометр. В спектрофотометре ослабление интенсивности светового потока измеряется также с помощью фотоэлементов. Однако в спектрофотометре имеется призма или дифракционная решётка, а также щель. Это позволяет выделить узкий участок спектра, именно тот, с которым «оптически реагирует» окрашенное соединение. Известно очень мало «серых веществ», поглощающих свет равномерно во всех участках спектра. Большинство же окрашенных веществ поглощает преимущественно какой-нибудь один участок спектра. Поэтому измерение при длине волны, соответствующей максимуму спектра поглощения, увеличивает чувствительность. Кроме того, облегчается определение одного окрашенного соединения в присутствии другого, иначе окрашенного; в частности, при работе со спектрофотометром значительно улучшаются результаты фотометрического определения с применением окрашенных реактивов.

    В любой фотометрической аппаратуре различаются следующие основные узлы:источник света;монохроматизатор света;кюветы;узел определения интенсивности света.

    Светофильтрами называются среды, способные пропускать лишь определённые области спектра. Обычно в фотоколориметрах используются в качестве светофильтров стёкла.

    Узел кювет наименее сложный по устройству. Кюветы должны быть изготовлены из материала, хорошо пропускающего лучи света, интенсивность которых измеряется. Для лучей видимой области спектра – это стекло, для ультрафиолетовых лучей – кварц. При работе с инфракрасными лучами применяют кюветы со стенками из плавленого хлорида серебра, часто вместо растворов исследуемых веществ применяют таблетки из этих веществ с бромидом калия. Кюветы бывают самых разнообразных форм: прямоугольные, цилиндрические, в виде пробирок, кюветы с быстрым удалением исследуемого раствора и другие.


    написать администратору сайта