Главная страница
Навигация по странице:

  • 1. Геотермальная энергия

  • Геотермальная энергия Мировой потенциал перспективы развития


    Скачать 5.8 Mb.
    НазваниеГеотермальная энергия Мировой потенциал перспективы развития
    Дата10.11.2022
    Размер5.8 Mb.
    Формат файлаrtf
    Имя файлаbibliofond_550889.rtf
    ТипДокументы
    #781372
    страница1 из 4
      1   2   3   4

    Оглавление
    Введение

    1. Геотермальная энергия

    Мировой потенциал. перспективы развития

    2. Геотермальные электростанции

    Виды ГеоТЭС по принципу работы

    3. Развитие геотермальной энергетики в России

    Заключение

    Библиографический список
    Введение
    Энерговооруженность общества - основа его научно-технического прогресса, база развития производственных сил. Её соответствие общественным потребностям - важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Она должна быть надежна и с расчетом на отдаленную перспективу. Энергетический кризис 1973-1974 годов в капиталистических странах продемонстрировал, что этого трудно достичь, основываясь лишь на традиционных источниках энергии (нефти, угле, газе). Необходимо не только изменить структуру их потребления, но и шире внедрять нетрадиционные, возобновляемые источники энергии (НВИЭ). К ним относят солнечную, геотермальную, ветровую энергию, а также энергию биомассы и мирового океана. Сюда же, относят и атомную энергию, но на нынешнем этапе ее развития это представляется крайне расплывчато.

    В отличие от ископаемых топлив, нетрадиционные виды энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к необратимому исчерпанию ресурсов. Основной фактор при оценке целесообразности использования НВИЭ - стоимость производимой энергии в сравнении со стоимостью энергии, получаемой обычными методами. Особое значение приобретают нетрадиционные источники для удовлетворения локальных потребителей энергии.

    Из приведенных выше альтернативных источников энергии, одним из самых распространенных, развитым в технологическом плане, востребованным и, что важно, дешевым, является геотермальная энергия. Благодаря этим качествам, уже с начала XX века она получила широкое распространение даже относительно других альтернативных источников энергии, что дает право надеяться, что она займет достойное место в развитии альтернативной энергетики нынешнего, а возможно и последующих столетий.



    1. Геотермальная энергия



    Мировой потенциал. перспективы развития



    Геотермальная энергия - это энергия, получаемая из природного тепла Земли, образующаяся за счет расщепления радионуклидов в результате физико-химических процессов в земных недрах.

    Источники геотермальной энергии по классификации Международного энергетического агентства делятся на 5 типов:

    - месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;

    - источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

    - месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой, так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;

    - сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;

    - магма, представляющая собой нагретые до 1300°С расплавленные горные породы. Тепло возникает там, прежде всего, за счет распада природных радиоактивных элементов, таких как уран и калий.

    Однако тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть такой энергии. Из них пригодные для использования геотермальные ресурсы составляют всего 1% общей теплоемкости верхней 10-километровой толщи земной коры, или 137 трлн. т. у. т (тонн условного топлива). Но и это количество геотермальной энергии может обеспечить нужды человечества на долгое время. Области повышенной сейсмической активности, вокруг краев континентальных плит являются наилучшими местами для строительства геотермальных электростанций, потому что кора в таких зонах намного тоньше. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности. К сожалению, человечество еще не научилось использовать энергию вулканов в мирных целях. А вот рассматриваемые далее скрытые, на первый взгляд незаметные, проявления энергии земных недр, уже давно эффективно используются людьми для получения тепловой, а в течение последних почти 100 лет и электрической энергии.

    При непосредственном использовании, высокотемпературное тепло, нагревающее геотермальную воду до значений температур, не превышающими 100°С, как правило, используется для нужд теплоснабжения, горячего водоснабжения и других подобных целей. Практика прямого использования тепла широко распространена на границах тектонических плит, например в Исландии, Японии, и Дальнем Востоке. Примером такого источника тепла служат гейзеры. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. При значениях температур геотермальных вод превышающих 140 - 150°С, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара вырывается на поверхность, экономически, наиболее выгодно использовать геотермальную энергию для выработки электричества (Смотри таблицу 1).
    Таблица 1 - Соотношения значений температур и способов применения геотермальной энергии

    Значение температуры воды,°С

    Область применения

    Более 150

    Выработка электроэнергии

    Менее 100

    Системы отопления зданий

    Около 60

    Системы горячего водоснабжения

    Менее 60

    Теплоснабжение теплиц, геотермальные холодильные установки и т.п.


    Группа экспертов из Всемирной ассоциации по вопросам геотермальной энергии, которая произвела оценку запасов низко - и высокотемпературной геотермальной энергии для каждого континента, получила следующие данные по потенциалу различных типов геотермальных источников нашей планеты (Смотри таблицу 2).
    Таблица 2 - Геотермальный потенциал низко- и высокотемпературной энергии

    Наименование континента

    Тип геотермального источника:




    Высокотемпературный, используемый для производства электроэнергии, ТДж/год

    Низкотемпературный, используемый в виде теплоты, ТДж/год (нижняя граница)




    традиционные технологии

    традиционные и бинарные технологии




    Европа

    1830

    3700

    >370

    Азия

    2970

    5900

    >320

    Африка

    1220

    2400

    >240

    Северная Америка

    1330

    2700

    >120

    Латинская Америка

    2800

    5600

    >240

    Океания

    1050

    2100

    >110

    Мировой потенциал

    11200

    22400

    >1400


    Как видно из этой таблицы, потенциал геотермальных источников энергии просто таки колоссален. Однако используется он крайне незначительно: установленная мощность ГеоТЭС во всем мире на начало 1990-х годов составляла всего лишь около 5000, а на начало 2000-х годов - около 6000 МВт, существенно уступая по этому показателю большинству электростанций, работающих на других возобновляемых источниках энергии. Да и выработка электроэнергии на ГеоТЭС в этот период времени была незначительной. Об этом свидетельствуют следующие данные. В структуре мирового производства электроэнергии, возобновляемые источники энергии в 2000 году обеспечили 19 % общемирового производства электроэнергии. При этом, несмотря на значительные темпы развития, геотермальная, солнечная и ветровая энергия составляла в 2000 году менее 3 % от общего объема использования энергии, получаемой от возобновляемых источников.

    Однако в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики.

    Отметим, что геотермальные ресурсы разведаны в 80 странах мира и в 58 из них активно используются. Крупнейшим производителем геотермальной электроэнергии являются США, где геотермальная электроэнергетика, как один из альтернативных источников энергии, имеет особую правительственную поддержку. В США в 2005 году на ГеоТЭС было выработано около 16 млрд. кВтч электроэнергии в таких основных промышленных зонах, как зона Больших гейзеров, расположенная в 100 км к северу от Сан-Франциско (1360 МВт установленной мощности), северная часть Соленого моря в центральной Калифорнии (570 МВт установленной мощности), Невада (235 МВт установленной мощности) и др. Геотермальная электроэнергетика бурно развивается также в ряде других стран, в том числе: на Филиппинах, где на ГеоТЭС на начало 2003 года было установлено 1930 МВт электрической мощности, что позволило обеспечить около 27% потребностей страны в электроэнергии; в Италии, где в 2003 году действовали геотермальные энергоустановки общей мощностью в 790 МВт; в Исландии, где действуют пять теплофикационных ГеоТЭС общей электрической мощностью 420 МВт, вырабатывающие 26,5 % всей электроэнергии в стране; в Кении, где в 2005 году действовали три ГеоТЭС общей электрической мощностью в 160 МВт и были разработаны планы по доведению этих мощностей до 576 МВт. Перечень государств лидеров, где ускоренными темпами развивается геотермальная электроэнергетика, смотри в таблице 3.
    Таблица 3 - Топ-15 стран, использующих геотермальную энергию (данные на 2007 г.)

    Страна

    Мощность (МВт)

    США

    2687

    Филиппины

    1969,7

    Индонезия

    992

    Мексика

    953

    Италия

    810,5

    Япония

    535,2

    Новая Зеландия

    471,6

    Исландия

    421,2

    Сальвадор

    204,2

    Коста-Рика

    162,5

    Кения

    128,8

    Никарагуа

    87,4

    Россия

    79

    Папуа-Новая Гвинея

    56

    Гватемала

    53


    К сожалению, Россия не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии в России по оценкам в 10-15 раз превышают запасы органического топлива в стране.

    Характеризуя развитие мировой геотермальной электроэнергетики как неотъемлемой составной части возобновляемой энергетики на более отдаленную перспективу, отметим следующее. Согласно прогнозным расчетам в 2030 году ожидается некоторое (до 12,5 % по сравнению с 13,8 % в 2000 году) снижение доли возобновляемых источников энергии в общемировом объеме производства энергии. При этом энергия солнца, ветра и геотермальных вод будет развиваться ускоренными темпами, ежегодно увеличиваясь в среднем на 4,1 %, однако вследствие "низкого" старта их доля в структуре возобновляемых источников и в 2030 году будет оставаться наименьшей.

    Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3 - 5 км обычно превышает 100°С.

    Геотермальная энергетика, и геотермальные электростанции в том числе, является одним из самых перспективных видов получения альтернативных источников энергии. Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена, прежде всего, истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием традиционной энергетики на окружающую среду.

    Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки. Главными достоинствами геотермальной энергии являются;

    - возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо- и теплоснабжения, а так же для выработки электроэнергии либо одновременно для того и другого;

    - практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт∙ч);

    - экономическая эффективность в несколько раз превосходит традиционные виды получения электроэнергии, а также и другие виды НВИЭ;

    - ее практическая неиссякаемость;

    - полная независимость в работе от условий окружающей среды, времени суток и года;

    - коэффициент использования превышает 90%;

    Тем самым, использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем;

    - обеспечение устойчивого тепло - и электроснабжения населения в тех районах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т.п.);

    - обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т.п.;

    - снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой;

    Указанные преимущества приводят к тому, что геотермальная энергетика, несмотря на свою молодость (у нее всего 100-летняя история) развивается сейчас во всем мире;

    Основными недостатками геотермальной энергии являются:

    необходимость обратной закачки отработанной воды в подземный водоносный горизонт;

    - высокая минерализация термальных вод большинства месторождений, наличие в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы;

    - ограниченные районы источников такой энергии;

    - низкий температурный потенциал теплоносителя;

    - ограниченность промышленного опыта эксплуатации станций;

    Также развитие геотермальной энергетики останавливает высокая цена установок, а также более низкий выход энергии в сравнении с газовыми или нефтяными скважинами. С другой стороны - их можно использовать гораздо дольше, чем месторождения традиционных источников.

    Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

    Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же, следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80 ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с этим ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

    геотермальная энергия россия электростанция
      1   2   3   4


    написать администратору сайта