Главная страница

Ітарау атом жне атом ядросы


Скачать 0.69 Mb.
НазваниеІтарау атом жне атом ядросы
Дата19.11.2022
Размер0.69 Mb.
Формат файлаdoc
Имя файла00022293-1b140978.doc
ТипДокументы
#799297
страница4 из 5
1   2   3   4   5

Зарядталған бөлшектердi бақылау мен тiркеудiң әдiстерi


Бөлшектердiң қасиеттерiн қарастырғанда олардың бiр-бiрiмен әсерлесу сипатын бiлудiң және осы әсерлесу кезiндегi олардың сан алуан түрленулерiн т.с.с. зерттеудiң маңызы зор. Ол үшiн бiз оларды тiркеп, әрi бақылай бiлуiмiз қажет. Сондықтан, ядролық физиканың туындылап, даму кезеңiнен бастап-ақ бөлшектердi тiркеп, оны бақылаудың әдiстерi де қалыптаса бастады. Бұл бағыттағы алғашқы қолданылған әдiстiң бiрi фотоэмульсия әдiсi. Радиоактивтiлiк құбылысының өзi ядролық сәулелердiң фотопластинкаға әсерi негiзiнде кездейсоқ ашылған болатын. Бұл әдiс күнi бүгiнге дейiн элементар бөлшектер физикасында, ғарыштық сәулелердi зерттеуде кеңiнен қолданылады. Әдiстiң мәнi мынада: зарядталған шапшаң бөлшек фотоэмульсияның қабаты арқылы өткен кезде өзi өткен траекторияның бойында көрiнбейтiн iз қалдырады да бұл iз фотопластинканы өңдегеннен соң айқын траектория түрiнде көрiнедi. Қалдырған iздiң қалыңдығы және ұзындығы арқылы бөлшектiң зарядын және энергиясын анықтаудың мүмкiндiгi бар.




7.6 - сурет
Тәжiрибелiк ядролық физиканың тамаша құралдарының бiр – Вильсонкамерасы. Оның жұмыс iстеу принципi мынадай: Қақпағы әйнектен жасалған цилиндр тектес ыдыстың iшiнде спирттiң буымен қаныққан ауа бар. Егер поршендi тез қозғап, цилиндрдiң көлемiн кенет ұлғайтсақ, адиабаталық үрдiстiң салдарынан ондағы ауа мен бу салқындайды да аса қаныққан күйге өтедi. Егер дәл осы мезетте камера арқылы зарядталған бөлшек өтсе, оның қозғалысының бойындағы аса қаныққан бу бөлшектерi конденсацияланып, ұсақ тамшылар пайда болады. Ол тамшыларды трек деп атайды. Осы сәтте бүкiл камераны жарқ еткен жарықпен сәулелендiрсек, бұл тректер суреттiң қара фонындағы ақ жолақтар түрiнде көрiнедi (7.6-сурет). Дәл өлшеулер жүргiзу үшiн әдетте Вильсон камерасын тұрақты магнит өрiсiне орналастырады. Онда бұл өрiстiң салдарынан қозғалып бара жатқан зарядталған бөлшектердiң траекториясы қисаяды. Сыртқы магнит өрiсiнiң индукциясы белгiлi болған жағдайда бөлшек траекториясының қисықтық радиусын өлшеу арқылы оның массасы мен зарядын және энергиясын анықтаудың мүмкiндiгi бар.




7.7 - сурет
Зарядталған бөлшектердi бақылауға мүмкiндiк беретiн тағы бiр құрал – көпiршiктi камера. Көпiршiктi камераны температурадасы өзiнiң қайнау температурасына өте жақын тұрған сұйықпен толтырады. Мұндай сұйық ретiнде әдетте сұйылтылған сутегi, пропан, ксенон т.с.с қолданады. Камера арқылы зарядталған бөлшек өткен кезде ол өткен жолдың бойындағы сұйық бөлшектерiнiң температурасы кенет артып, қайнайды да бу көпiршiктерi пайда болады. Ал оны жоғарыдағы Вильсон камерасындағыдай жолмен суретке түсiрiп алуға болады (7.7-сурет). Көпiршiктi камерадағы сұйықтың тығыздығы Вильсон камерасындағы газдың тығыздығынан әлде қайда артық болғандықтан мұнда аса дәл өлшеулер жүргiзудiң мүмкiндiгi бар.




7.8 - сурет
Шапшаң зарядталған бөлшектер мен γ-кванттарды тiркеуде Гейгер-Мюллересептегiштерi қолданылады (7.8-сурет). Ол iшi өте аз қысымдағы (шамамен 0,1 атм) газ қоспасымен, мысалы аргон мен метил спиртiнiң буының қоспасымен толтырылған цилиндр трубкадан тұрады. Цилиндрдiң ортасында одан изолятор арқылы оқшауланған жiңiшке сым бар. Бұл жiңiшке сым анодтың, ал цилиндрдiң корпусы катодтың ролiн атқарады. Анод пен катодтың арасына аса жоғары кернеу берiлген. Есептегiштiң жұмыс көлемi арқылы зарядталған бөлшек өткен кезде ол өз жолындағы газ бөлшектерiн иондайды да, пайда болған электрон мен оң ион жоғарғы кернеудiң салдарынан туындылаған өрiстiң әсерiнен сәйкес анод пен катодқа қарата үдей қозғалады. Бұл бөлшектер өз кезегiнде жолында кездескен газдың басқа атомдарын иондайды, сөйтiп бұл үрдiс тасқынды сипат алады. Иондалған бөлшектер тасқыны анод пен катодқа келiп жеткенда тiзбек өте аз уақытқа тұйықталады да, бөлшек тiркеледi.




7.9 - сурет
Ядролық сәуле шашудың кез-келген түрiн тiркеу үшiн иондаушыкамералар қолданылады (7.9-сурет). Иондаушы камераның жұмыс iстеу принципi Гейгер-Мюллер есептегiштерiнiң жұмыс iстеу принципiне ұқсас. Мұнда тек анод пен катодтың арасына берiлетiн кернеудiң шамасы аса үлкен емес. Сондықтан тiзбекте пайда болатын токтың шамасы аса аз. Оны арнайы күшейткiштердiң көмегiмен өлшеп, иондаушы бөлшектердiң қарқыны жөнiнде баға беруге болады.
    1. Табиғи радиоактивтiлiк. α, β, γ – сәуле шығару


Құрамындағы протондар мен нейтрондардың саны әртүрлi болғанымен олардың қосындысы, яғни нуклондардың саны бiрдей болатын ядролар изобаралар деп аталады. Мысалы нуклондарының саны 10-ға тең болатын изобаралар мыналар : , және . Тәжiрибе, негiзiнен бiр массалық санға сәйкес келетiн бiрнеше изобарлардың тек бiреуi ғана орнықты болатынын көрсетедi. Мысалы жоғарыдағы изобарлардың iшiнен тек ғана орнықты. Атом ядросының орнықтылығын анықтайтын принцип мынау : ядро орнықты болу үшiн оның энергиясы осы ядро өз еркiнше өзгере алатын басқа барлық ядролардың энергиясынан аз болуы тиiс.

Изобарлардың энергиясының әртүрлi болуы протон мен нейтронның массаларының әртүрлi болуымен және протонның электр заряды болуымен түсiндiрiледi. Мұндай энергиясы жоғары орнықсыз ядро өзiндегi артық энергиядан басқа орнықты ядроларға ыдырау арқылы немесе өз зарядын бiр бiрлiкке өзгерту арқылы құтылады. Орнықсыз ядролардың осылай өз бетiнше басқа ядроға өзгеруi радиоактивтiлiк деп аталады. Табиғатта кездесетiн изотоптардың радиоактивтiлiгi табиғи радиоактивтiлiк деп аталады. Ал зертханада ядролық реакцияның көмегiмен алынған изотоптардың радиоактивтiлiгiн жасанды радиоактивтiлiк деп атайды. Радиоактивтiлiктi табиғи және жасанды деп бөлу тек шартты түрде, олардың бiр-бiрiнен принципиальдi айырмашылығы жоқ. Мұндай түрленулердiң мысалы α-ыдырау және β-ыдырау болып табылады.

Альфа-ыдырау деп берiлген ядроның өз еркiмен альфа-бөлшекке және ядро-қалдыққа мына түрдегi түрленуiн айтады



Альфа-ыдырау кезiнде ыдырайтын (аналық) ядроның заряды екiге, ал массалық саны төртке кемидi. Тәжiрибе Zi82 болатын барлық ядролардың альфа-радиоактивтi екенiн көрсетедi. Мұның бiр мысалы ядросы. Бұл ядроның альфа ыдырауының нәтижесiнде альфа бөлшектi және торий ядросының изотопын аламыз



Бұл ыдыраудың нәтижесiнде альфа-бөлшектiң кинетикалық энергиясы 4,18 МэВ, ал сәйкес торий изотопының кинетикалық энергиясы 0,07 МэВ болады.

Альфа-ыдыраудың механизмiн классикалық физика түсiндiре алмайды. Классикалық көзқарас тұрғысынан альфа-бөлшек ядродан бөлiнiп шығу үшiн ядролық тартылыс күшiне қарсы жұмыс жасауы қажет. Ал бiрақ шындығында мұндай жұмыс жасалынбайды. Бұлай болуының себебi кванттық механикадағы бөлшектiң толқындық қасиетiмен байланысқан туннельдiк құбылыс арқылы түсiндiрiледi.

Бета-ыдыраудың үш түрiн ажыратады. Олар электрондық, позитрондық және К-қармау бета-ыдыраулары. Электрондық бета-ыдырау кезiнде ядро өз бетiнше зарядын бiр бiрлiкке арттыра отырып өзiнен электронды ұшырып шығарады. Бұл құбылыстың негiзiнде протон мен нейтронның бiр-бiрiне айнала алатын қасиетi жатыр. Бос нейтронның массасы бос протон мен электронның массаларының қосындысынан үлкен. Сондықтан энергетикалық тұрғыдан мұндай ыдырау тиым салынбаған. Тәжiрибе нәтижелерiн терең талдау бұл ыдырау кезiнде протон мен электронмен қатар заряды мен массалық саны нөлге тең тағы бiр бөлшек бөлiнетiнiн көреттi. Э.Фермидiң ұсынысы бойынша нейтрино деп аталған бұл бөлшектi 1956 жылы тәжiрибеден байқады. Сонымен нейтронның ыдырау реакциясы



мұндағы - электрондық антинейтрино.

Ядроның байланыс энергиясының болуынан ядро құрамындағы протондар мен нейтрондардың массасы бұл бөлшектiң бос күйiндегi массасынан негiзiнен аз екенi шығады. Осы себептен де ядро құрамындағы барлық нейтрондар бiрдей бета-ыдырауға түсiп кетпейдi. Тек энергиясы жоғары кейбiр ядроларда ғана мұндай түрлену энергетикалық тұрғыдан мүмкiн болады. Мұндай ядроларды бета-радиоактивтi ядролар деп атайды. Бета-ыдырау кезiнде ядродағы нуклондардың саны өзгермей қалатын болғандықтан ядроның массалық саны өзгерiссiз қалады.

Массасы нейтронның массасынан аз болғандықтан бос протон орнықты. Бiрақядродағы протонның массасы кванттық механиканың анықталмағандық принципiне сәйкес кейбiр сәтте нейтронның массасынан артық болып кетуi де мүмкiн. Бұл жағдайда мына түрде



позитрондық бета-ыдырау жүзеге асады.

Ал К-қармау немесе электрондық қармау кезiнде атомның К-қабатындағы электронның бiрi ядроға жұтылады.

Ал γ - сәуле шығару радиоактивтiлiктiң дербес түрi болып табылмайды. Әдетте γ - сәуле шығару альфа- және бета-ыдыраумен қатар жүредi.Бұл ыдыраулардың нәтижесiнде алынған еншiлес ядро әдетте қозған күйде болады. Ал ол қозған күйден негiзгi күйiне өткен кезде қозған күйден негiзгi күйге өткен том тәрiздi өзiнен γ - сәуле шығарады. Бiрақ бұл γ-кванттардың энергиясы атом шығаратын γ-кванттардың энергиясынан әлде қайда үлкен болады.

Радиоактивтiлiк ыдырау заңы. Ығысу ережесi


Радиоактивтi ыдырау заңы деп радиоактивтi ядролардың санының уақыт бойынша өзгеру заңдылығын айтады. Бұл заңды оңай анықтауға болады. Шындығында, егер қандай да бiр уақыт мезетiнде радиоактивтi ядролардың саны N болса онда dt уақыт аралығында ыдырайтын ядролардың саны dN мынаған тең болады

dN=-λN·dt

мұндағы минус таңбасы dN – дi ыдырамаған ядролардың өсiмшесi ретiнде қарастырумен байланысты. Ал λ, радиоактивтi ядроның бiрлiк уақыт аралығында ыдырау ықтималдылығы. Оны әдетте ыдырау тұрақтысы деп атайды. Бұл өрнектi интегралдай отырып

lnN =-λt + const

аламыз. Бастапқы t=0 уақыт мезетiндегi ыдырамаған радиоактивтi ядролардың санын N0 деп белгiлей отырып, const = lnN0 екенiн аламыз. Онда

N =N0 e-λt

Мiне, осы өрнек радиоактивтi ыдырау заңы болып табылады (7.10 - сурет).

Бастапқы радиоактивтi ядролардың жартысы ыдырайтын уақытты жартылайыдырау периоды деп атап, Т1/2 әрiпiмен белгiлейдi. Онда бұл анықтамадан

ал бұдан




7.10 - сурет
Бүгiнгi күнге дейiнгi белгiлi радиоактивтi ядролардың жартылайыдырау периоды 3·10-7 с-тан 5·1015 жылға дейiнгi аралықтағы мәнге ие.

Радиоактивтi заттың активтiлiгi деп бiрлiк уақыт аралығында болатын ыдыраудың санын айтады, яғни

Бұл жерден активтiлiктiң радиоактитi ядролардың санына пропорционал, ал жартылайыдраудың периодына керi пропорционал екенi көрiнiп тұр.

Активтiлiктiң халықаралық бiрлiктер жүйесiндегi бiрлiгi беккерель (Бк). Беккерель деп 1 с iшiнде бiр ыдырау жасайтын радиоактивтi заттың активтiлiгi алынған. Нақтылы өмiрде активтiлiктiң кюри (Ки) деп аталатын бiрлiгi жиi қолданылады. Кюри ретiнде 1 с аралығында 3,7·1010 ыдырау жасайтын радиоакивтi заттың активтiлiгi алынған.

1.3. Атом ядросының құрылысы. Атом ядроларының байланыс энергиясы


Кез-келген химиялық элементтiң атомының ядросы оң зарядталған протоннан және заряды жоқ нейтроннан тұрады. Протонның заряды абсолют шамасы жағынан электронның зарядына тең. Протон мен нейтрон нуклон деп аталатын ядролық бөлшектiң әртүрлi зарядтық күйi болып табылады. Ядродағы протондардың саны Z, Менделеевтiң периодтық жүйесiндегi химиялық элементтiң атомдық нөмiрiмен сәйкес. Ядродағы нейтрондадың саны N деп белгiленедi. 11Н және 32Не ядроларынан басқа барлық ядролар үшiн N≥Z. Менделеевтың периодтық таблицасының бiрiншi жартысында тұрған жеңiл элементтер үшiн N≈Z, ал екiншi жартысындағы элементтерде нейтронның саны артықтау N≈1,6·Z.

Ядроның массалық саны деп A=N+Z болатын нуклондардың жалпы санын айтады. Ядроны әдетте мынадай символмен белгiлейдi. Зарядтарының саны бiрдей, ал массалық саны әртұрлi ядроларды изотоптар деп атайды. Изотоптардағы протонның саны бiрдей болады да, нейтронның саны әртүрлi болады. Мысалы сутегiнiң изотоптары: , (немесе -дейтерий), (немесе - тритий); гелийдiң изотоптары: , ; уранның изотоптары: , . Бүгiнгi күнi барлық химиялық элементтердiң үшжүзге жақын орнықты, ал екi мыңға жақын орнықсыз (радиоактивтi) изотоптары белгiлi.

Электронның массасы протонның массасынан 1836 есе кiшi болғандықтан ядроның массасы атомның массасымен бiрдей десе де болады. Элементар бөлшектердiң массасын әдетте массаның атомдық бiрлiгi (м.а.б) деп аталатын жүйеден тыс бiрлiкпен өлшейдi. 1 м.а.б. ретiнде сутегiнiң изотопының массасының 1/12 бөлiгi алынған.

Ядро сонымен қатар өзiндiк қозғалыс мөлшерi моментiмен - спинiмен сипатталады. Ядроның спинi нуклондардың спиндерi арқылы анықталады. Әрбiр нуклонның спинi ħ/2-ге тең. Жұп нуклоннан тұратын ядроның спинi (ħ бiрлiгiнде) бүтiн санға немесе нөлге тең. Ал тақ нуклоннан тұратын ядроның спинi (ħ бiрлiгiнде) жартылай бүтiн санға тең.

Атом ядросы алып тұрған көлемнiң айқын шекарасы жоқ. Бұл нуклондардың толқындық қасиетiмен байланысты. Сондықтан ядроның өлшемдерiн шартты түрде анықтайды. Ядроның көлемi нуклонның сандарына пропорционал. Сондықтан ядроны радиусы R-ға тең сфера деп есептеп, оның радиусын әдетте мынадай эмпириялық өрнекпен анықтайды

R=R0A1/3 мұндағы R0 =(1,3 - 1,7)·10-15 м

Ядроның өлшемдерi өте аз болғандықтан ондағы протондардың кулондық тебiлу күшi өте үлкен болады. Мысалы құрамында 82 протоны бар қоғасынның ядросындағы протондардың тебiлу күшi бiрнеше мың ньтонға жетедi. Бiрақ ядро бұл тебiлу күшiнiң салдарынан бөлшектенiп кетпейдi. Бұл протондар мен нетрондардың арасында кулондық күштен де күштi тартылу күшiнiң бар екенiн көрсетедi. Бұл күштердi ядролық күштер деп, ал бұл күштердiң арқасында әсерлесудi пәрмендi әсерлесу деп атайды. Протон мен нейтронның пәрмендi әсерлесу тұрғысынан алғанда ешқандай айырмашылығы жоқ сондықтан оларды ядролық физикада нуклон деген бiр бөлшек ретiнде қарастырады.

Ядролық күштер өте аз аралықта әсер ететiн күштер болып табылады. Ол 10-15 м-ге дейiнгi аралықта әсер етедi де одан тысқары жерде өте тез кемiп кетедi.

Масс-спектрограф деп аталатын құралдардың көмегiмен ядроның массасын өлшеу кез-келген Z протоннан және N нейтроннан тұратын ядроның массасы бос жүрген Z протон мен N нейтронның массаларының қосындысынан аз екенiн көрсеттi. Ал масса мен энергия арасындағы байланысты ескерсек бос протондар мен нейтрондардың энергияларының қосындысы олардан құралған ядроның энергиясынан артық екенi шығады. Олай болса, ядроны оны құрайтын бөлшектерге ажырату үшiн осы энергиялардың айырымына тең энергия жұмсау керек. Мұндай энергияны DЕбай ядроның байланыс энергиясы деп атайды.

ΔEбай =Zmp c2 +Nmn c2 -mя с2 =Δmc2

мұндағы Δm=Zmp+Nmn-mя массалар ақауы деп аталады. Ядродағы бiр нуклонға келетiн орташа байланыс энергиясын Δεбай деп белгiлеп, ядроның меншiктi байланыс энергиясы деп атайды.

Резерфорд тәжiрибелерiнен атомның өлшемдерi өте кiшi ядродан және оны қоршаған электрондық бұлттан тұратыны анықталды. Ендi физиктердiң алдында жаңа физикалық нысанды, атом ядросының құрылымы мен қасетiн зертеу мәселесi туды. Атом ядросының негiзгi сипаттамасының бiрi оның заряды. Ядроның зарядын өлшеу оның мәнi элементар зарядты сәйкес химиялық элементтiң реттiк номерiне көбейткенге тең екенiн, яғни q=Ze екенiн көрсеттi.

Уран ядросының бөлiнуi. Ядролық реакцияда энергияның бөлiнуi


Бөлшектердiң атом ядросымен әсерлесуiнiң нәтижесiнде оны басқа ядро мен бөлшекке өзгертуi ядролық реакция деп аталады. Ядролық реакцияны символдық түрде былайша жазады A+a->B+b немесе A(a,b)B. Ядролық реакция кейбiр жағдайда бiрмәндi болып өтпейдi, яғни A+a->B+b схемасымен қатар A+a->C+c схемасы да жүзеге асуы мүмкiн. Реакцияның мүмкiн болатын жолдары оның каналдары деп аталады.

Ядролық реакция кезiнде толық заряд және нуклондар саны сақталады. Сонымен қатар бұл кезде энергияның, импульстiң және импульс моментiнiң сақталу заңы орындалады.

Ядролық реакциялар энергия бөлiне немесе жұтыла отырып өтуi мүмкiн. Бұл жағдайлардың қайсысының жүзеге асатынын реакцияға түсетiн және реакциядан шығатын бөлшектердiң массаларының айырымын бiле отырып өө өрнегiнен есептеп табуға болады.

Әртүрлi ядролық реакциялардың iшiнде кейбiр ауыр ядролардың бөлiну реакциясының маңызы ерекше. Ауыр ядролар ондағы нейтронның ара салмағы үлкен болғандықтан орнықсыз болып келедi. Бұл ауыр ядролардың меншiктi байланыс энергиясының орташа ядролармен салыстырғанда аз болатынан көрiнiп түр. Сондықтан мұндай ядроларға тағы бiр нейтрон келiп қосылса ол бөлшектенiп кетедi. Осының бiр мысалы, уран ядросының нейтрондармен атқылаған кезде бөлiну реакциясы алғаш рет 1939 жылы ашылған болатын. Бастапқы ядрода нейтрондар артық болғандықтан реакция кезiнде бөлшектенген ядролармен қатар бiрнеше нейтрон да ұшып шығады. Мысалы уран бөлшектенген кезде бiр бөлшектену актiсiнде 2-3 нейтрон бөлiнедi. Егер дұрыс жағдай болса бұл нейтрондар уранның басқа ядроларына барып түсiп, оларды бөлшектейдi. Сөйтiп бұл үрдiс тасқынды түрде күрт өседi. Бұлай жалғасқан реакцияны тiзбектi реакция деп атайды.

Тiзбектi реакцияны нақтылы жүзеге асыру оңай шаруа емес. Уранның бөлшектенуi кезiнде бөлiнетiн нейтрондар тек уранның 235 изотопын ғана бөлшектей алады. Оның энергиясы 238 изотопты бөлшектеуге жеткiлiксiз. Ал табиғи уранда 238 уранның үлесi 99,3% те 235 уранның үлесi бар болғаны 0,7%. Сондықтан бiрiншiден тiзбектi реакцияны жүзеге асыру үшiн 235 уранды таза түрде бөлiп алу қажет. Екiншiден оның мөлшерi жеткiлiктi болуы тиiс, себебi оның мөлшерi аз болса реакция кезiнде туындылайтын нейтрондар уран ядроларына жолықпай тысқары шығып кетедi. Тiзбектi реакция басталатын ең аз массасын критикалық масса деп атайды. Мысалы 235 уран үшiн оның мәнi бiрнеше ондаған килограмм. Тiзбектi реакция кезiнде орасан көп энергия бөлiнедi. Уранның температурасы миллиондаған градусқа көтерiлiп, пайда болған от шар маңындағының бәрiн күйдiрiп, қиратады.

Уранның бiр ядросы бөлшектенген кезiнде 200 МэВ-қа жуық энергия бөлiнедi. Оның 165 МэВ-қа жуығы реакциядан шығатын бөлшектердiң кинетикалық энергиясы түрiнде болады да қалғаны таза гамма-кванттардың энергиясы болады. Осы энергияны бiле отырып 1 кг уран бөлшектенгенде бөлiнетiн энергияны есептеп табуға болады, ол 80 миллиард джоулға тең. Ол 1 кг көмiр немесе мұнай жаққан кезде бөлiнетiн энергиядан бiрнеше миллион есе артық. Сондықтан ядролық энергияны пайдалану өте тиiмдi.
    1. Элементар бөлшектер. Бөлшектер мен электромагниттiк сәулелердiң өзара түрленуi


Физиканың даму барысында элементар бөлшектер ұғымы бiраз өзгерiске ұшырады. Алғашқы кезде элементар деп iшкi құрылымы жоқ, басқа құрамдас бөлiктерге ыдырамайтын бөлшектердi түсiндi. Бүгiнгi күннiң түсiнiгi бойынша элементар бөлшектерден олардың iшкi құрылымының болмауы талап етiлмейдi. Элементар бөлшектер деп, физика ғылымының қазiргi даму дәрежесiнде бос күйiнде кездесетiн қарапайым бөлшектерден тұрады деп есептеуге болмайтын бөлшектердi айтады. Элементар бөлшектердi кейде субъядролық бөлшектер деп те атайды.

Қазiргi заманның элементар бөлшектер физикасы осы бөлшектердiң қасиеттерiн анықтайды, оларды классификациялайды, iргелi әсерлесудiң қасиеттерiн зерттейдi және осы әсердiң салдарынан олардың бiр бiрiне ауысуларын зерттейдi. Соңғы кездерi элементар бөлшектердiң iшкi құрылымдары да кеңiнен зерттелуде.Бұл бөлшектердiң көптеген ерекшелiктерi, соның iшiнде iшкi құрылымы тек жеткiлiктi жоғарғы энергияда ғана көрiнiс табады. Сондықтан элементар бөлшектер физикасын жоғарғы энергия физикасы деп те атайды.

Кейбiр элементар бөлшектер табиғатта бос немесе босаң байланысқан күйде кездеседi. Бiздi қоршаған дүние негiзiнен осы бөлшектерден құралған. Мұндай бөлшектердiң қатарына ядро құрамына кiретiн протондар және нейтрондар, атомның қабыршығын құрайтын электрондар, электромагниттiк өрiстiң кванттары болып табылатын фотондар (γ-кванттар) жатады. Сәл кейiнiрек ядроның β-ыдырауы кезiнде туатын νe нейтрино және антинейтрино, ядролық әсерлесудiң тасымалдаушылары болып табылатын пи-мезондар ( π+ , π0 , π-) ашылды. Бұдан әрi осы бөлшектердiң антибөлшектерi ашылды

Уақыт өте келе элементар бөлшектердiң саны күрт өстi. Бүгiнгi күнде олардың жалпы саны антибөлшектерiн қоса есептегенде 350 ден асып түседi. Бiрақ олардың аса көп бөлiгi орнықсыз бөлшектер. Олар табиғатта бос күйiнде кездеспейдi. Оларды тек арнайы зертханаларда үлкен жылдамдықтағы орнықты бөлшектердi соқтығыстыру арқылы алады. Осылай туындылаған орнықсыз бөлшектер тез арада ыдырап кетедi де ақырында орнықты бөлшектер пайда болады.

Бөлшек пен антибөлшек кездесетiн болса жойылып, екi кейде үш фотонға айналады. Бұл құбылысты аннигиляция деп атайды. Мысалы электрон мен оның антибөлшегi позитрон кездескен кезде мынадай түрлену болады

Бұл үрдiс кезiнде электр зарядының, энергияның, импульстiң және импульс моментiнiң сақталу заңы орындалады. 1933 жылы Ф. и И.Жолио-Кюри керi процесс – атом ядросының маңындағы гамма кванттан электрон-позитронның тууын

байқады. Энергияның сақталу заңы бойынша мұндай гамма-кванттың энергиясы электрон мен позитронның тыныштық энергияларының қосындысынан артық болуы керек.

Антибөлшектерден атом құралуы мүмкiн. Мысалы антисутегiнiң атомында терiс зарядталған антипротонның маңында оң зардталған позитрон қозғалып жүредi.

Элементар бөлшектердiң кестесiнде өмiр сүру 10-20с-тан артық болатын элементар бөлшектер жөнiнде деректер келтiрiлген. Ол жердегi бөлшектер олардың массаларының өсу ретiмен келтiрiлген. Мұндағы жеңiл бөлшектер лептондар, ал одан ауырырақтары мезондар, ал ең ауырлары бариондар деп аталады. Мезондар мен бариондар адрондар деп аталатын топқа кiредi. Бұл кестедегi топтардың еш қайсысына кiрмейтiн фотон ерекше тұр.

Табиғаттағы барлық заттар, бөлшектер бiр-бiрiмен әсерлеседi. Бiр қарағанда осындай сан-алуан болып келетiн әсерлесулер негiзiнен iргелi әсерлесу теп аталатын төрт түрлi әсерлесудiң нақтылы жағдайда көрiнiс табуы болып табылады. Iргелi әсерлесуге гравитациялық, электромагниттiк, күштi және әлсiз әсерлесулер жатады.

Гравитациялық әсерлесу 1687 жылы И.Ньютон ашқан бүкiл әлемдiк тартылыс заңымен анықталады. Гравитацилық күштер кез-келген денелердiң арасында әсер етедi. Бiрақ массалары өте аз болғандықтан элементар бөлшектердiң арасында бұл күш ешқандай роль атқармайды. Бұл күш аспан механикасында, астрофизикада шешушi роль атқарады.

Кез-келген зарядталған дене немесе бөлшек электромагниттiк әсерлесуге қатысады. Атомдардың, молекулалардың кристаллдардың болуы газ, сұйық және қатты денелердiң қасиеттерi осы күштiң негiзiнде анықталады.

Күштi әсерлесу мезондар мен бариондарға, яғни адрондарға тән. Лептондар мен фотон күштi әсерлесуге қатыспайды. Ол қысқа аралықта ғана, шамамен 10-15м, әсер етедi. Бұл аралықтағы оның мәнi гравитациялық және электромагниттiк күштермен салыстырғанда өте үлкен.

Әлсiз әсерлесуге фотоннан басқа кез-келген бөлшек қатысады. Бұл күштердiң әсер ету аймағы 10-18м. Әлсiз әсерлесудiң мысалдары нейтронның, мюонның және зарядталған пиондардың төмендегi ыдыраулары

Қазiргi заман физикасының ең күштi теориялары кванттық механикада, кванттық электродинамика мен кванттық хромодинамикада бөлшектердiң өзара әсерлесуi олардың арасында болатын бөлшек алмасу арқылы түсiндiрiледi. Осы тұрғыдан алғанда электромагниттiк әсерлесу ол бөлшектер арасында фотонның алмасуы арқылы, ядролық күштер нуклонның арасында пи-мезондардың, ал жалпы күштi әсерлесу бұл өрiстiң кванттары глюондардың алмасуы, әлсiз әсерлесу өте ауыр бөлшектер W+, W- және Z0 векторлық мезондардың алмасуы арқылы түсiндiрiледi.

Ендi элементар бөлшектерге қысқаша шолу жасай кетелiк. Лептондар – жоғарыда айтқанымыздай, күштi әсерлесуге қатыспайтын бөлшектер. Олардың қатарына жататындар : электрон e-, электрон нейтриносы νe, мюон μ-, мюон нейтриносы νμ, таон τ- және таон нейтриносы ντ. Әрине барлық лептондардың антибөлшектерi бар. Нейтринолардың массасының неге тең екендiгi жөнiндегi мәселе бүгiнгi күнге дейiн шешiмiн тапқан жоқ.

Элементар бөлшектердiң ең көп тараған тобы адрондар. Адрондар барлық iргелi әсерлесулерге қатысады. Адронның протоннан басқасы орнықсыз. Олар белгiлi бiр уақыттан кейiн басқа бөлшектерге ыдырап кетедi. Олардың жартылай ыдыру периоды 10-20 – 10-24 с аралығында болады. Бұл бөлшектердi резонанстар деп атайды. Спинiнiң мәнiне байланысты адрондар спинi нөлге тең болатын мезондар және спинi 1/2 болатын бариондар болып бөлiнедi.

Энергиясы ондаған гигаэлектронвольт болатын электрондардың протоннан және нейтроннан шашырауын зерттеу бұл бөлшектердiң iшкi құрылымы бар екенiне нұсқайды. Жалпы адрондардың қандай да бiр iргелi бөлшектен құралғаны жөнiнде бiрнеше теория ұсынылған болатын. Соның ең жемiстiсi кварктар теориясы болды.

Кварктар деп нағыз элементар бөлшектердi айтады. Барлық адрондар, яғни мезондар, бариондар және резонанстар осы кварктардан тұрады. Бүгiнгi күнде алты кварк бар деп есептелiнедi. Олады сәйкес латынның u, d, s, c, b, t әрiптерiмен белгiлейдi. Бұл кварктардың қасиеттерi және олардан адрондардың қалай құралатыны төмендегi кестелерде келтiрiлген.

ІІ-тарау АТОМ ҚҰРЫЛЫМЫ. ЭЛЕМЕНТАР БӨЛШЕКТЕР БӨЛІМІН ОҚЫТУ ӘДІСТЕМЕСІ
2.1. Атом құрылымы. Элементар бөлшектер тарауына арналған күнтізбелік тақырыптық жоспар
(Жаратылыстану бағыты) Сынып: 11





Өтілетін сабақтың тақырыбы

Сағат саны

Күні

Үйге тапсырма

Үлестірмелі материалдар және көрнекілігі

Қосымша әдебиеттер көзі




Атомдық физика

10













1

Сызықтық спектрлер.

1




7.1

7.2

.

Тарихи мәліметтер

2

Зертхана жұмысы «Сәуле шығарудың тұтас және сызықтық спектрлерін бақылау»

1




Жұмыстың сипаттамасы







3

Резерфорд тәжірибесі.

1




7.2


Атомның планетарлық моделі.




4

Бор постулаттары

1




7.3

Бор бойынша сутегі атомының моделі

Ғалымдардың өмірі мен творчествосы

5

Франк-Герц тәжірибесі.

1




7.5







6

Де-Бройль толқындары. Анықталмаушылық қатынасы

1




7.6 7.7







7

Есеп шығару

1




27.1-27.6







8

Лазерлер

1




7.9




Басов пен Прохоровтың және Таунстың ғылымдағы жетістіктері

9

Сызықтық емес оптика

1




7.10







10

Есеп шығару

1




қайталау




Есептер жинағы




Атом ядросының физикасы

12













11

Атом ядросы Ядроның нуклондық моделі

1




8.1 8.2

Атом ядросының моделі

Протонның ашылу тарихы

12

Ядродағы нуклондардың байланыс энергиясы

1




8.3







13

Есептер шығару

1




1210-1221







14

Табиғи радиоактивтілік

1




8.4




Беккерельдің тәжірибесі жайлы мәліметтер

15

Радиоактивті ыдырау заңы

1




8.5


Деңгейлік тапсырма




16

Есептер шығару

1




34.1-34.9







17

Ядролық реакциялар.Жасанды радиоактивтік.

1




8.7




Кюрилер туралы мәлімет

18

Есептер шығару

1




36.1-36.4







19

Ауыр ядроның бөлінуі.Тізбекті ядролық реакциялар.

1




8.8 8.9

Ядролық реакцияның сызбасы




20

Ядролық реактор.Ядролық энергетика.

1




8.10

АЭС-тің сызбалары

Курчатовтың өмір баяны

21

Термоядролық реакциялар.Радиоактивті сәулелердің биологиялық әсері. Радиациядан қорғану.

1




8.11




Жергілікті жердегі радиациялық фон

22

Тарау бойынша бақылау жұмысы

1




қайталау










Элементар бөлшектер

4













23

Ғарыштық сәулелер

1




9.1

Элементар бөлшектердің түрлері

Ғарыштық сәулелердің пайдасы мен зияны

24

Ядролық күштер

1




9.2







25

Атомнан кварктарға дейін.Қазіргі заманғы әлемнің ғылыми бейнесі

1




9.3







26

Элементар бөлшектердің проблемасы. Микродүниенің сақталу заңдары

1




9.4

9.5




Ғылыми деректер


2.1. Атом құрылымы. Элементар бөлшектер бөлімінде өтілетін тақырыптардың сабақ жоспары

Тақырып: §55-65. Атомың құрылысы. Атом ядросы. Ядролық Энергия

Сабақ мақсаты:

Білімділік: Атомның құрылысы, атом ядросы. Ядролық әнергия. Элементар бөлшектер және әлем дамуы туралы мағлұматтарды қайталау сабағы.

  • Атомның құрылысы, атом ядросы. Ядролық әнергия. Элементар бөлшектер және әлем дамуы туралы мағлұматтарды қайталау сабағы.

Тәрбиелік: алған білімдерін жүйелеп отыруға тәрбиелеу, өзара жолдастық көмек көрсете білуге және жауапкершілікті сезіне білуге тәрбиелеу;

Дамытушылық: зейіні мен зердесін дамыту, белсенділіктері мен қабілеттіліктерін арттыру;
Материалдар: бейнефильм,электрондық оқулық, Д.И. Менделеев жүйесі, Оқулық-9.
Жоспар.

  1. Атом ядросы туралы бейнефильммен сабақ басталады..

  2. Ұйымдастыру кезеңі

  3. Өткен материалды қайталау кезеңі.

  4. Оқушыларды тексеру кезеңі, сұрақтар, есеп шығару арқылы.

  5. Оқушыларды бағалау кезеңі. Оқушыларға кімнің жауабы ұнады.

  6. Үйге тапсырма § 55-65.

Атом ядросы туралы бейнефильммен сабақ басталады.



Радиоактивті ( Бейнефильм)



  • Радиоактивті – атомдар жоғары өтімділігі сәулелерді шығару құбылысы

  • Радиоактивті заттардың атомдары үш түрлі сәуле шығарады

  • Альфа-сәулеленуі - гелий атомдары ядроларының ағыны;

  • Бета- сәулесі - электрондардың ағыны;

Гамма-сәулесі - рентген сәулер ағыны, электромагниттік толқын
a - бөлшектері – гелий атомның ядросы. a- сәулелердің өтімділігі өте нашар. 0,1 мм қалындығындай қағаз тосқауыл бола алады. Магнит өрісінде нашар ауытқиды.
β – сәуле электрондардың ағыны, қозғалыс жылдамдығы жарық жылдамдығына жақын шама. Магнит және электрлік өрістерде көп ауытқиды. β – сәуле заттардан өткенде аз жұтылады. Бірнеше миллимер қалындығы бар алюминий пластина сәулелерді өткізбейді.

g - сәуле электромагниттік толқындар. Қасиеттері бойынша рентген сәулелеріне ұқсас, бірақ өтімділік қасиеті өте жоғары, рентген сәулелеріне қарағанда. Магнит өрісінде ауытқымайды. Өтімділік қасиеті өте жоғары. 1 см қалындығы қалайы, бірнеше метр бетон қабаттарынан сәулелер еркін өте алады. g – сәулелер қалайыдан өткен кезде тек өтәмділігі 2 есе азаяды.

Радиоактивті сәулелердің түрлері – оқушылар атап шығу тиіс.

a – ыдырау реакциясында зарядтық сандардың (төменгі индекстер), массалық сандардың (жоғарғы индекстер) сақталу заңының орындалуы байқалады.



Электрондық ыдырау





Позитрондық бета- ыдырау







g – с әулеленуде заряды өзгермейді; ядроның массасы өте аз өзгереді .




g
Радиоактивтік ыдырау заңы ( Бейнефильм)
N0 – алғашқы ядролардың саны

N– ыдырамаған ядролар саны

t – ыдырау уақыты

Т- жартылай ыдырау периоды
Басқарушы реакциялар ядролық (атомным) реакторларда өтеді.



Электрондық оқулық арқылы басқарушы реакциялар ядролық (атомным) реакторларда өтуін көру.

Энергия связи нуклонов в ядре. Ядерные силы. Масса ақауы-



Байланыс энергия -



  • Э. Резерфорд в 1902 ж. радиоактивтік ыдырау заңы ашты.



Тізбекті ядролық реакциялар.



ЕСЕП ШЫҒАРУ КЕЗЕҢІ

Слайд 17- 28. 13 есепті шығару көзделіп отыр.

Слайд 17. Радиоактивтік ыдырау нәтижесінде изотоп ураны изотоп ториға. Қандай ядро бөленді?

Слайд18. Мына ядролық реакциялардағы жетіспей тұрған белгілерді жазыңдар

С лайд 18 . Калий атомының ядросының құрамы.

Слайд 19. Ядродағы электрондар саны неге тен?

Слайд 20. b - сәуленің ағыны?

Слайд 21. Алюминийдің заряды 13 тен, массалық саны 27. Бұл ядро неден тұрады.

(Бейнефильм «Атом моделі»)

Слайд 22. Атомндық электр станцияларда отын ретінде қандай заттар қолданылады? А. Уран Б. Көмір В. Кадмий Г. Графит

Слайд 23. Төмеде көрсетілген ядролық реакцияда энергия бөлінеме әлде жұтылама?



Слайд 24. Натрий ядросының изотопының энергиясы қандай? Егер ядроның массасы 22,9898м.а.б.

Слайд 25. Торий радиға қандай ыдырау нәтижесінде айналады.

Слайд 26. Тезбектік реакция өту үшін , қандай реакция алыну керек?



Слайд 27. Бета-сәуле шығару – бұл?

Слайд 28. Төменде көрсетілген кестедегі ядроның құрамынн дұрыс көрсеткен жолақ.
Оқушыларды бағалау кезеңі.

Үйге тапсырма § 55-65.
Сабақтың мақсаты:
Білімділік: Оқушылардың Атомдық физика тарау бойынша білімдерін қорытыныдылап, жинақтау.
Дамытушылық: Оқушылардың ой-өрісін, түсніктерін ғылыми тұрғыда дамыту.
Тәрбиелік: Тарау бойынша қосымша материалдар табуға, ізденімпаздыққа баулу.

Сабақтың міндеттері:
1. Білім: өткен тарауды қайталаймыз, №1 кластермен жұмыс жасаймыз.
2.Түсіну: тараудың негізгі заңдарды қайталау. Есептер шығару. №2 кластермен жұмыс
3. Қолдану: Әр түрлі тапсырмалар арқылы оқушы білімдерін тексеру.
4. Талдау: сабақта алған білімдерімізді жан-жақтан талдаймыз, ядролық реакциялардың теңдеулерін жазамыз.
5. Жинақтау: өткен сабақтарда алған білімдерді жинақтаймыз. Тест.
6. Бағалау.

Сабақтың көрнекілігі: инерактивті тақта, тест, электронды оқулық, видеокөрністер.
Қоданылатын әдістер: Блум таксономиясы. Әңгімелеу, есептер шығару.
Сабақтың түрі: Қорытынды

Сабақтың барысы:
І. Ұйымдастыру кезеңі.
ІІ. Білім
1. Атомның құрылысы, өлшемдері қандай? Зерттеген ғалым.
2. Неліктен электрон ядроны айналған кезде ядроны үстіне құламайды?
3. Бор постулаттары тұжырымдау.
4. Корпускулалық толқындық дуализм фотонға ғана қатысты ма?
Дәлелдеуі: E=hV E • mc2

ІІІ. Түсіну (ІІ кластермен жұмыс)
1. Радиоактивтік дегенмізі не?
2. Қандай радиоактивтік табиғи деп аталады?
3. Қандай радиоактивтік жасанды деп аталады?
4. Содди ережелері
5. Радиоактивтік ыдырау заңы

ІҮ. Қолдану
1. Лазер дегеніміз не?
2. Лазердің негізгі қаситеттері?
3. Лазердің құрылысы.
4. Уранның изотопының L-ыдырауы кезінде қандай ядро пайда болды?
5. Актиний изотопы үш рет L-ыдырауға ұшырағаннан кейін қандай элемент пайда болады?
6. қорғасын изотопының радиоактивті ыдырауы кезінде в-бөлшек ұшып шығады. Қорғасын изотопныңы ядросы қандай элементтің ядросына айналады?
7. Жасанды түрлендіріуге ұшыраған бірінші ядро – азоттың ядросын а-бөлшектермен атқылағанда, азоттың оттегі изотопының ядросына түрленеді. Сонда бөлініп шығатын бөлшек.
8. Радиактивті кобальттің жартылай ыдырау периоды 72 тәулік. Массасы 4 г кобальттің 216 тәулікте ыдырайтын бөлігі.

V. Талдау
Ядролық реакция толықтырыңдар.

ҮІ. Жинақтау
Тест.
1. Атомның планетралық моделін ұсынған ғалым.
А. Бор
Б. Эйнштейн
С. Резерфорд
Д. Чедвик

2. Электронның массасы протонның масасынан неше есе кіші?
А. 2 есе
Б. 1800 есе
С. 3 есе
Д. 1860 есе

3. Реттік номерлері бірдей, ал массаслық сандары әртүрлі элементтер қалай аталады?
А. Изотоптар
Б. Изобаралар
С. Изохоралар
Д. Адиабаталар

4. Масалық сандары бірдей, зарядттың сандары әртүрлі нуклиттері қалай аталады?
А. Изотоптар
Б. Изобаралар
С. Изохоралар
Д. Адиабаталар

5. нейтрондар санын анықта?
А. 89
Б. 225
С. 136
Д. 450

6. Альфа бөлшек дегініміз не?
А. Гелий атом ядросы
Б. Электрондар ағыны
С. Протондар ағыны
Д. Нейтрондар ағыны

7. бетта сәулелердің заряды.
А. Гелий атом ядросы
Б. Электрондар ағыны
С. Протондар ағыны
Д. Нейтрондар ағыны
1   2   3   4   5


написать администратору сайта