Коррозия металлоа. Коррозия металлов. I. Вводное слово учителя
Скачать 45.05 Kb.
|
I. Вводное слово учителя 31 января 1951 г. обрушился железнодорожный мост в Квебеке (Канада), введенный в эксплуатацию в 1947 г. В 1964 г. рухнуло одно из самых высотных сооружений в мире – 400-метровая антенная мачта в Гренландии. Из-за повреждений нефтепроводов в реки и на грунт выливается нефть. У металлов есть и враг, который приводит к огромным безвозвратным потерям металлов, ежегодно полностью разрушается около 10% производимого железа. По данным Института физической химии РАН, каждая шестая домна в России работает впустую – весь выплавляемый металл превращается в ржавчину. А как по другому называется этот процесс? – Коррозия. II. Изучение нового материала Итак, тема нашего урока: “Коррозия” Цель сегодняшнего урока познакомиться с процессами коррозии металлов, классификации коррозионных процессов и способах защиты металлов от коррозии Слово коррозия происходит от латинского corrodere, что означает разъедать. Хотя коррозию чаще всего связывают с металлами, но ей подвергаются также камни, пластмассы и другие полимерные материалы и дерево. Например, в настоящее время мы являемся свидетелями большого беспокойства широких слоев людей в связи с тем, что от кислотных дождей катастрофически страдают памятники (здания и скульптуры), выполненные из известняка или мрамора. Таким образом, коррозией называют самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды. Ржавлением называют только коррозию железа и его сплавов. Другие металлы корродируют, но не ржавеют. Хотя корродируют практически все металлы, в повседневной жизни человек чаще всего сталкивается с коррозией железа. В результате коррозии железо ржавеет. Этот процесс очень сложен и включает несколько стадий. Его можно описать суммарным уравнением: 4Fe + 6H2O (влага) + 3O2 (воздух) = 4Fe(OH)3 В природе, хотя и очень редко, но встречается самородное железо. Его происхождение считают метеоритным, т.е. космическим, а не земным. Поэтому первые изделия из железа (они изготавливались из самородков) ценились очень высоко – гораздо выше, чем из серебра и даже золота. Химическая (или газовая) коррозия – это разрушение металлов в результате их химического взаимодействия с веществами окружающей среды. Химическая коррозия часто наблюдается в процессе обработки металлов при высоких температурах. Ей подвергаются арматура печей, детали двигателей внутреннего сгорания, аппаратура химических производств и т.д. При химической коррозии происходит взаимодействие металла с газами, находящимися в составе среды. Чаще всего это кислород. Металл окисляется, и на его поверхности образуются различные соединения: 4Fe0 + 3O2 —> 2Fe+32O3 2Fe0 + 3O2 + 3SO2 —> Fe2+3(SO4)3 2Zn0 + O2 —> 2Zn+2O Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные пленки, Если эта пленка прочная, плотная, хорошо связана с металлом, то она защищает металл от дальнейшего разрушения. Такие защитные пленки появляются у Zn, Al, Cr, Ni, Sn, Pb, Nb и др. У железа она рыхлая, пористая, легко отделяется от поверхности металла и не способна защитить его от дальнейшего разрушения. Однако наибольший вред приносит электрохимическая коррозия. Электрохимическая коррозия – это разрушение металлов в среде электролита с возникновением в системе электрического тока. Как правило, металлы и сплавы неоднородны, содержат различные примеси. При их контакте с электролитами одни участки поверхности начинают выполнять роль анода, а другие роль катода. В этом случае образуется гальванический элемент, электродами которого и являются металлы, находящиеся в растворе электролита. Возникает электрохимический процесс, т.е. наряду с химическими процессами (отдача электронов), протекают и электрические (перенос электронов от одного участка к другому). Электрохимическая коррозия протекает в присутствии влаги. Ей подвергаются подводные части судов в морской и пресной воде, паровые котлы, металлические сооружения и конструкции под водой и в атмосфере. Проблемная ситуация: Колосс Родосский и затонувшая яхта миллионера. В III до нашей эры на острове Родос был построен маяк в виде огромной статуи Гелиоса. Колосс Родосский считался одним из семи чудес света, однако просуществовал всего 66 лет и рухнул во время землетрясения. В 20 годы ХХ в. один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее днище было обшито дорогим металлом (сплав 70% никеля и 30% меди), а киль и раму руля изготовили из стали. В морской воде в подводной части яхты образовался гальванический элемент с катодом из металла, а анодом из стали. Он настолько энергично работал, что яхта еще до завершения отделочных работ вышла из строя, ни разу не побывав в море. Ученые считают, что в обоих случаях причиной произошедших событий были окислительно-восстановительные процессы. Какие именно? Ответ: Причиной была контактная коррозия. У Колосса Родосского бронзовая оболочка была смонтирована на железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас разрушился. Днище яхты было обшито медно-никелевым сплавом, а рама руля, киль и другие детали изготовлены из стали. Когда яхта была спущена на воду. Возник гигантский гальванический элемент, состоящий из катода- днища, стального анода и электролита – морской воды. В результате судно затонуло, ни сделав ни одного рейса. При возникновении гальванической пары сила возникающего электрического тока тем больше, чем дальше стоят металлы друг от друга в ряду напряжений. При этом поток электронов от более активного металла идет к менее активному металлу. Более активный металл (железо), расположенный в ряду напряжений левее, будет разрушаться (т.к. является анодом), предохраняя тем самым менее активный металл от коррозии (медь). Коррозионные процессы весьма разнообразны, рассмотрим их протекание в различных средах электролита. В кислотной среде атомы железа отдают электроны, которые переходят к меди и на ее поверхности соединяются с ионами водорода, выделившимися из компонентов среды. На катоде идет процесс восстановления ионов водорода с образованием газообразного водорода. В щелочной или нейтральной среде идет восстановление кислорода, растворенного в воде с образованием OH-. Далее катионы железа и гидроксид-ионы соединяются с образованием неустойчивого гидроксида железа (II), который далее окисляется до оксида железа (III). При использовании металлических материалов очень важен вопрос о скорости их коррозии. От чего зависит скорость коррозии? Перед вами 5 пронумерованных стаканов. В 1-м стакане железный гвоздь находится в воде. Во 2-м стакане железный гвоздь в растворе хлорида натрия. В 3-м стакане к железному гвоздю прикрепили медную проволоку и они находятся в растворе хлорида натрия. В 4-м стакане железный гвоздь находится в контакте с цинком, и они помещены в раствор хлорида натрия. В 5-м стакане железный гвоздь находится в растворах хлорида и гидроксида натрия. Давайте сравним полученные результаты и объясним результаты эксперимента (демонстрация приготовленного за несколько дней опыта по коррозии). Проблема: Почему в одних случаях коррозия усиливается, а в других замедляется? Объясните процессы, происходящие в каждом стакане. Объяснения учеников: В стакане №1 – железо прокорродировало слабо, в чистой воде коррозия идет медленно. Мы наблюдаем химическую коррозию. В стакане №2 – идет химическая коррозия, но здесь скорость коррозии выше, чем в 1-ом стакане, следовательно, хлорид натрия – увеличивает скорость коррозии. В стакане №3– мы наблюдаем электрохимическую коррозию (железо находится в контакте с медью). Скорость коррозии высока, т.к. раствор хлорида натрия – сильный электролит. Суммарное уравнение: Fe0 + 2H+ > Fe2+ + H2 0 В стакане №4– также идет коррозия, но не железа, а цинка, т.к. железо менее активный металл является катодом, а цинк анодом: В стакане №5 – железо практически не подвергается коррозии, следовательно, гидроксид натрия – замедляет коррозию, гидроксид-ионы являются ингибиторами, т.е. замедляют коррозию. Вывод: Катионы водорода и растворенный в воде кислород – важнейшие окислители, вызывающие электрохимическую коррозию. Скорость коррозии тем больше, чем сильнее отличаются металлы по своей активности (т.е. чем дальше друг от друга они расположены в ряду напряжений металлов). Способы защиты от коррозии. Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (V в. до н.э.) уже имеется упоминание о применении олова для защиты железа от коррозии. Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих ее протекание. Коррозия металлов осуществляется в соответствии с законами природы и потому ее нельзя полностью устранить, а можно лишь замедлить. Одним из наиболее распространенных способов защиты металлов от коррозии является нанесение на их поверхность защитных пленок: лака, краски, эмали. Ребята, а что является символом Парижа? – Эйфелева башня. Она неизлечимо больна, ржавеет и разрушается, и только постоянная “терапия” помогает бороться с этим смертельным недугом: Её красили 18 раз, отчего её масса 9000 т каждый раз увеличивается на 70 т. Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой: например 3CrCl2 + 2Fe – [1000°C] —> 2FeCl3 + 3Cr Металлические покрытия делят на две группы: коррозионностойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. В электрохимическом ряду напряжений металлов они стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. По отношению к железу они более электроотрицательны, т.е. в ряду напряжений находятся левее железа. В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки. И то и другое получают главным образом протягиванием листа железа через расплав соответствующего металла. Для большей стойкости водопроводные трубы и арматуру из стали и серого чугуна часто подвергают оцинковыванию также окунанием в расплав данного металла. Это резко повышает срок их службы в холодной воде. Интересно, что в теплой и горячей воде срок службы оцинкованных труб может быть даже меньше, чем неоцинкованных. Пассивация металлов. Вероятно, многие обратили внимание на то, что серную и азотную кислоты перевозят по железной дороге в стальных цистернах. Об этом свидетельствуют надписи, например “Осторожно, серная кислота”. Как это согласуется с теми знаниями, которые отражены в школьных учебниках? Все дело в том, что по железной дороге перевозят не разбавленные, а концентрированные кислоты. Зачем же перевозить воду? Разбавить кислоту можно и на месте потребления. Оказывается, что в отличие от разбавленных концентрированная серная, так же как и концентрированная азотная кислоты, не взаимодействует с железом. Правильнее сказать, что кратковременное взаимодействие происходит, но оно быстро прекращается. Специалисты говорят, что в крепких растворах этих кислот железо пассивируется. Еще в 1836 г. знаменитый английский химик М. Фарадей высказал предположение, что причиной пассивации является образование на поверхности металла плотной оксидной пленки. В свое время на это предположение не обратили должного внимания. Лишь через 100 лет эти взгляды возродил и развил известный русский ученый В.А. Кистяковский. После него этот взгляд на пассивацию оформился в виде теории. Согласно ей при пассивации на поверхности металла образуется сплошная и плотная оксидная (реже хлоридная, сульфатная, фосфатная) пленка толщиной в несколько десятков нанометров. Ингибиторы коррозии металлов. Применение ингибиторов – один из эффективных способов борьбы с коррозией металлов в различных агрессивных средах (в атмосферных, в морской воде, в охлаждающих жидкостях и солевых растворах, в окислительных условиях и т.д.). Ингибиторы – это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от лат. inhibere, что означает сдерживать, останавливать. Известно, что дамасские мастера для снятия окалины и ржавчины пользовались растворами серной кислоты с добавками пивных дрожжей, муки, крахмала. Эти примеси были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате чего растворялись лишь окалина и ржавчина. Для предупреждения коррозии и защиты от нее применяются разнообразные методы. Шлифование поверхностей изделия – чтобы на них не задерживалась влага. Приготовление химически стойких сплавов (сплавы, содержащие хром, никель, которые при высокой температуре на поверхности металла образуют оксидный слой), нержавеющие стали, из которых изготавливают детали машин, инструменты, посуду (ножи, вилки...). Нанесение защитных покрытий. Неметаллические – неокисляющиеся масла, специальные лаки, краски, эмали. Ребята, а что является символом Парижа? – Эйфелева башня. Она неизлечимо больна, ржавеет и разрушается, и только постоянная “терапия” помогает бороться с этим смертельным недугом: Её красили 18 раз, отчего её масса 9000 т каждый раз увеличивается на 70 т. Химические – искусственно создаваемые поверхностные пленки: оксидные, нитратные, фосфатные, полимерные и другие. Например, железо пассивируют погружением в концентрированную азотную кислоту. Полимерные покрытия изготавливают из полиэтилена, полихлорвинила, полиамидных смол. Наносят их двумя способами: нагретое изделие помещают в порошок полимера, который плавится и приваривается к металлу, или поверхность металла обрабатывают раствором полимера в низкокипящем растворителе, который быстро испаряется, а полимерная пленка остается на изделии. Металлические. Электрохимические методы Протекторная (анодная) – к защищаемой металлической конструкции, присоединяют кусок более активного металла (протектор), который служит анодом и разрушается в присутствии электролита, В качестве протектора при защите корпусов судов, трубопроводов, кабелей и других металлических изделий используют магний, алюминий, цинк. Катодная – металлоконструкцию подсоединяют к катоду внешнего источника тока. Происходит электрозащита – нейтрализация тока, возникающего при коррозии, постоянным током, пропускаемым в противоположном направлении. Подавление влияния коррозионной среды. Введение веществ – ингибиторов, замедляющих коррозию (нитрит натрия, хромат и дихромат калия, фосфаты натрия и другие). Защитное действие этих веществ обусловлено тем, что они адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (хроматы и дихроматы) переводят металл в пассивное состояние. Удаление растворенного в воде кислорода (деаэрация). Таким образом, металлы и сплавы можно защищать от коррозии двумя способами: изоляцией поверхности металла от среды и искусственным повышением коррозионной стойкости путем замедления процессов коррозии. Закрепление (фронтальное обсуждение) Требуется скрепить железные детали. Какими заклепками следует пользоваться медными или цинковыми, чтобы замедлить коррозию железа? Ответ обоснуйте. Как называются вещества, замедляющие коррозию? Введение каких элементов в сталь повышает ее коррозионную стойкость? К стальному днищу машины была предложена протекторная защита. Какой металл для этого лучше применить: Zn, Cu или Ni? Почему многие детали быстрее корродируют вблизи предприятий? Лист железа, покрытый цинком, и лист железа, покрытый оловом, процарапали до железа. Будет ли подвергаться коррозии железо в обоих случаях? РЕФЛЕКСИЯ Чтобы предотвратить глобальные катастрофы на судах, фабриках и заводах, нужно упорно изучать методы защиты от этой проблемы. И в то же время необходимо найти применение коррозии металлов. Одним из направлений может быть ее применение для разрушения конструкций в труднодоступных местах. Разрушение металлов и сплавов можно применить как один из способов борьбы с космическим мусором. Если бы железо, подобно серебру и золоту, не ржавело, то мы не существовали бы, и ни одно растение не зеленело бы на Земле. Растворённая в воде его ржавчина составляет часть пищи растений и придаёт им зеленый цвет. Та же “ржавчина” снабжает железом нашу кровь и придаёт ей красный цвет. |