Часть II СПОРТИВНАЯ ФИЗИОЛОГИЯ. Ii спортивная физиология спортивная физиология является как учебной, так и научной дисциплиной
Скачать 1.03 Mb.
|
10.2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ФОРМИРОВАНИЯ ДВИГАТЕЛЬНЫХ НАВЫКОВ В понимание физиологических механизмов двигательных навыков особый вклад внесли отечественные физиологи — И. П. Павлов, В. М. Бехтерев, А. А. Ухтомский, П. К. Анохин, Н. А.Бернштейн, А. Н. Крестовников, Н. В. Зимкин, В. С. Фарфельидр. 10.2.1. ФУНКЦИОНАЛЬНАЯ СИСТЕМА, ДОМИНАНТА, ДВИГАТЕЛЬНЫЙ ДИНАМИЧЕСКИЙ СТЕРЕОТИП Любые навыки — бытовые, профессиональные, спортивные — не являются врожденными движениями. Они приобретены в ходе индивидуального развития. Возникая в результате подражания, условных рефлексов или по речевой инструкции, двигательные акты осуществляются специальной функциональной системой нервных цент-ров(АнохинП. К., 1975).Деятельность этой системы включает следующие процессы: синтез афферентных раздражений (информации из внешней и внутренней среды), учет доминирующей мотивации (предпочтение действий), использование памятных следов (арсенала движений и изученных тактических комбинаций); формирование моторной программы и образа результата действий; внесение сенсорных коррекций в программу, если результат не достигнут. Комплекс нейронов, обеспечивающих эти процессы, располагается на различных этажах нервной системы, становясь доминантой, т. е. господствующим очагом в центральной нервной системе. Он подавляет деятельность посторонних нервных центров и, соответственно, лишних скелетных мышц (Ухтомский А. А., 1923). В результате движения выполняются все более экономно, при включении лишь самых необходимых мышечных групп и лишь в те моменты, которые нужны для его осуществления. Происходит экономизация энерготрат. Порядок возбуждения ь доминирующих нервных центрах закрепляется в виде определенной системы условных и безусловных рефлексов и сопровождающих их вегетативных реакций, образуя двигательный динамический стереотип (Павлов И. П.; Крестовни-ковА.Н., 1954). Каждый предшествующий двигательный акт в этой системе запускает следующий. Это облегчает выполнение целостного упражнения и освобождает сознание человека от мелочного контроля за каждым его элементом. Роль условно-рефлекторного меха-низма образования двигательных навыков доказывается, в частности, тем, что выработанные навыки во многом угасают при перерывах в тренировке (при отсутствии подкрепления). Однако двигательные навыки отличаются от классических слюнных условных рефлексов, описанных И. П. Павловым (сенсорных или рефлексов 1 рода). Навыки, в основном, представляют условные рефлексы 2 рода — опера нтные или инструментальные условные рефлексы (Конорский Ю. М., 1970). В них новым отделом рефлекторной дуги является ее эффекторная часть, т. е. создается новая форма движения или новая комбинация из ранее осво-енныхдействий. Построение новой формы движений на основе имеющихся элементов Н. В. Зимкин (1975) отнес к явлениям экстраполяции (использования предшествующего опыта). 10.2.2. СТАБИЛЬНОСТЬ И ВАРИАТИВНОСТЬ КОМПОНЕНТОВ ДВИГАТЕЛЬНОГО НАВЫКА Возникшие в первой половине XX века представления о доминанте, функциональной системе и двигательном динамическом стереотипе легли в основу понимания механизмов формирования дви -гательных навыков в процессе обучения человека. Дальнейшие исследования позволили уточнить эти классические представления. Уже Н. А. Бернштейн отмечал, что даже достаточно простые навы-ковые действия не являются полностью стереотипными. При многократных повторениях они могут различаться по амплитуде, скорости выполнения отдельных элементов и т. д. Как оказалось, еще больше они различаются повнутренней структуре. Многоканальная регистрация ЭМ Г различных мышц при выполнении спортивных упражнений показала, что в одних и тех же освоенных движениях значи -тельно варьирует состав активных мышечных групп. Одни мышцы включаются вдвижения постоянно, а другие — лишь периодически (табл. 12). Варьируют длительность фаз, мышечные усилия, последовательность включения мышц. Это позволило говорить о закономерной вариативности внешних и внутренних компонентов двигательного навыка (Зимкин Н. В., 1975). Наличие вариаций позволяет отбирать оптимальные и отбрасывать неадекватные моторные программы, учитывать не только внешние изменения ситуации, но и сократительные возможности мышц. Вариативность особенно выражена в периоды врабатывания, перед отказом от работы и в восстановительном периоде. Регистрация активности отдельных нейронов головного мозга (в экспериментах на животных и в клинике при лечебных мероприятиях) показала значительную вариативность их включения в одни и те же освоенные действия. При этом между ними образуются как «жесткие» (стабильные), так и «гибкие» (вариативные) связи (Бехтерева Н. П., 1980). Сохранение основных черт двигательного навыка в условиях из меняющейся внешней среды и перестроек внутренней среды организма возможно лишь при варьировании «гибких» связей в системе управления движениями. Так, хорошо освоенный навык ходьбы осуществляется при разном наклоне туловища, переменных усилиях ног, неодинаковом составе скелетных мышц и нервных центров, различных вегетативных реакциях в зависимости от рельефа дороги, качества грунта, силы встречного ветра, степени отягощения, утомления человека и прочих причин. «Гибкие» элементы функциональной системы составляют основную ее часть, так как в любых условиях они обеспечивают выполнение навыка, достижение требуемого результата. Таблица 12 - Стабильность и вариативность включения различных мышц у квалифицированного тяжелоатлета при многократных рывках штанги (по:Н.В. Зимкин, 1973) Мышцы Наличие активности (+) при десяти повторных рывках 8 9 10 Четырехглавая мышца бедра, наружн. То же, средний пучок То же, внутренний пучок Длинная спины Дельтовидная, средний пучок Трехглавая плеча Трапециевидная Двуглавая плеча Икроножная Двуглавая бедра Ягодичная Широчайшая спины Дельтовидная, передний пучок Большая грудная Навыки циклических движений более стабильны по сравнению с ациклическими, так как в их основе лежат повторения одинаковых циклов: Элементы циклических движений Элементы ациклических движений 1 —2—1—2—1—2... 1-2-3-4-5-6... Циклические движения превращаются в навык при переходе от отдельных двигательных актов к последовательной их цепи — от отдельных шагов к ходьбе и бегу, от начертания отдельных букв к письму и т. п. При этом к процессам коркового управления движениями подключаются древние автоматизмы, такназываемые циклоидные движения, осуществляемые подкорковыми ядрами головного мозга. Навыки в ситуационных видах спорта (спортивных играх, единоборствах) отличаются наибольшей вариативностью. Стереотипы в этих видах спорта формируются лишь при овладении отдельными элементами техники (например, в штрафных бросках). Автоматизация этих навыков позволяет быстрее включать их в новые движения. В стандартных видах спорта навыки более стереотипны. Их стабильность повышается по мере роста спортивного мастерства. Нои здесь необходимо сохранение определенного уровня вариативности навыков для их адаптации к разным условиям выполнения. 10.3. ФИЗИОЛОГИЧЕСКИЕ ЗАКОНОМЕРНОСТИ И СТАДИИ ФОРМИРОВАНИЯ ДВИГАТЕЛЬНЫХ НАВЫКОВ Процесс обучения двигательному навыку начинается с определенного побуждения к действию, которое задается подкорковыми и корковыми мотивационными зонами. У человека это, главным образом, стремление к удовлетворению определенной социальной потребности (любовь к данному виду спорта, желание им заниматься, преуспеть в упражнении и пр.). Оптимальный уровень мотиваций и эмоций способствуетуспешномуусвоению двигательной задачи и ее решению. 10.3.1. ЗАМЫСЕЛ И ОБЩИЙ ПЛАН ДЕЙСТВИЯ На первом этапе формирования двигательного навыка возникает замысел действия, осуществляемый ассоциативными зонами коры больших полушарий (переднелобными и нижнетеменными). Они формируют общий план осуществления движения. Вначале это лишь общее представление о двигательной задаче, которое возникаетлибо при показе движения другим лицом (педагогом, тренером или опытным спортсменом), либо после словесной инструкции, самоинструкции, речевого описания. В сознании человека создается определенный эталон требуемого действия, «модель потребного будущего» (Бернштейн НА., 1966). Эту функцию П. К.Анохин назвал «опережающее отражение действительности». Формирование такой наглядно-образной модели складывается из образа ситуации в целом (задаваемые пространственные и временные характеристики двигательной задачи) и образа тех мышечных действий, которые необходимы для достижения цели. Имея представление о требуемой модели движения, человек может осуществить ее разными мышечными группами. Так, например, подпись человека имеет характерные черты, независимо от мышечных групп, выполняющих ее (пальцы, кисть, предплечье, нога). Особое значение имеют в этом процессе восприятие и переработка зрительной информации (при показе) и слуховой (при рассказе). Опытные спортсмены быстрее формируют зрительный образ движения, так как у них лучше выражена поисковая функция глаза, и они способны эффективно выделять наиболее важные элементы. У них богаче кладовая «моторной памяти» — хранящиеся в ней образы освоенных движений, быстрее происходит извлечение нужных моторных следов. 10.3.2. СТАДИИ ФОРМИРОВАНИЯ ДВИГАТЕЛЬНЫХ НАВЫКОВ На втором этапе обучения начинается непосредственное выполнение разучиваемого упражнения. При этом отмечаются 3 стадии формирования двигательного навыка: 1)стадия генерализации (иррадиациивозбуждения), 2)стадия концентраци ии, 3)стадия стабилизации и автоматизации. На первой стадии созданная модель становится основой для перевода внешнего образа во внутренние процессы формирования программы собственных действий. Физиологические механизмы этого во многом неясны. На ранних этапах онтогенеза, когда речевая регуляция движений (внешней речью постороннего лица или внутренней собственной речью) еще не развита, особенное значение имеют процессы подражания, общие у человека и животных. Наблюдая за действиями другого лица и имея некоторый опыт управления своими мышцами, ребенок превращает свои наблюдения в программы собственных движений. Эти процессы аналогичны процессам освоения речи, которую ребенок сначала слышит от окружающих людей, а затем преобразует в собственную моторную речь (по терминологии психолога Л. С. Выготского, это — явление интериоризации, т. е. превращение внешней речи во внутреннюю). Некоторые особенности программирования отражаются в межцентральных взаимосвязях электрической активности мозга. Можно видеть, например, что при наблюдении за выполнением бега посторонним лицом в коре больших полушарий у человека появляются потенциалы в темпе этого бега (своеобразная модель наблюдаемого движения). Подобные изменения ритмов мозга и специфические перестройки пространственной синхронизации корковых потенциалов набл издаются также при представлении и при мысленном выполнении движений. При этом пространственные взаимосвязи мозговой активности начинают отличаться от состояния покоя и приближаться к таковым при реальном выполнении работы (табл. 13). Таблица 13 - Появление сходства корковых функциональных систем при мысленном и реальном выполнении бега у спринтера 1 разряда (по данным корреляционного анализа ЭЭГ)
Примечание: 1—8 — номера корковых зон, А — плеяды взаимосвязанной (синхронной и синфазной) активности различных корковых зон с коэффициентами корреляции 0.7-1.0, В — независимые корковые зоны. В процессах программирования используются имеющиеся у человека представления о «схеме тела», без которых невозможна правильная адресация моторных команд к скелетным мышцам в разн ых частях тела, и о «схеме пространства», обеспечивающие пространственную организацию движений. Нейроны, связанные с этими функциями, находятся в нижнетеменной ассоциативной области задних отделов коры больших полушарий. Организация движени й во времени, оценка ситуации, построение последовательности двигательных актов, их сознательная целенаправленность осуществляются передне-лобной ассоциативной корой. Только в ней имеются специальные нейроны кратковременной памяти, которые удерживают созданную программу от момента прихода в кору внешнего пускового сигнала (или от момента самоприказа) до момента осуществления моторной команды. Соответственно этому во время реальной работы можно видеть особую специфику мозговой активности, отражающую характерные черты двигательных программ (рис. 32). Так, у бегунов и конькобежцев как при воображаемом, так и при реальном выполнении бега по дорожке или на коньках, устанавливается сходство (пространственная синхронизация) потенциалов передне-лобной (программирующей) области с моторными центрами ног, а у гимнастов при представлении и выполнении стойки на кистях — с моторными центрами рук. При стрельбе, бросках мяча в баскетбольное кольцо возникает сходство активности зрительных, нижнетеменных зон (ответственных за пространственную ориентацию движений) и моторных зон коры, что обеспечивает точность глазо-двигательных реакций. В процессе фехтования к этим зонам подключаются передне-лобные области, связанные с вероятностной оценкой текущей и будущей ситуации. В создании моторных программ принимают участие многие нейроны коры, мозжечка, таламуса, подкорковых ядер и ствола мозга. Обширное вовлечение множества мозговых элементов необходимо для поиска наиболее нужных из них. Этот процесс обеспечивается широкой иррадиацией возбуждения по различным зонам мозга и сопровождается обобщенным характером периферических реакций — их генерализацией. В силу этого первая стадия начинающихся попыток выполнить задуманное движение называется стадией генерализации. Она характеризуется напряжением большого числа активированных скелетных мышц, их продолжительным сокращением, одновремен ным вовлечением в движения мышц-антагонистов, отсутствием интервалов в ЭМ Г во время расслабления мышц (рис. 33). Все это нару-шает координацию движений, делает их закрепощенными, приводит к значительным энерготратам и, соответственно, излишне выраженным вегетативным реакциям. На этой стадии наблюдаются особенное учащение дыхания и сердцебиения, подъем артериального давления, резкие изменение состава крови, заметное повышение температуры тела и потоотделения. Однако нет достаточной согласованности этих сдвигов между собой и их соответствия мощности и характеру работы. Массированный поток афферентных импульсов от проприоре-цепторов многих мышц затрудняет отделение основных рабочих мышечных групп от посторонних. Анализ «темного» мышечного чувства еще более осложняется обильным притоком интероцепти вных сигналов — в первую очередь, от рецепторов дыхательной и сердечно-сосудистой систем. Требуются многократные повторения разучиваемого упражнения для постепенного совершенствования моторной программы и приближения ее к заданному эталону. На второй стадии формирования двигательного навыка происходит концентрация возбуждения в необходимых для его осуществления корковых зонах. В посторонних же зонах коры активность подавляется одним из видов условного внутреннего торможения — дифференцировочным торможением. В коре и подкорковых структурах создается мозаика из возбужденных и заторможенных нейронных объединений, что обеспечивает координированное выполнение двигательного акта. Включаются лишь необходимые мышечные группы и только в нужные моменты движения, что можно видеть на записях ЭМГ. В результате рабочие энерготраты снижаются. Навык на этой стадии уже сформирован, но он еще очень непрочен и нарушается при любых новых раздражениях (выступление на незнакомом поле, появление сильного соперника и т. д.). Эти воздействия разрушают неокрепшую еще рабочую доминанту, едва установившиеся межцентральные взаимосвязи в мозгу вновь приводят к иррадиации возбуждения и потере координации. На третьей стадии в результате многократного повторения навыка в разнообразных условиях помехоустойчивость рабочейдоми-нанты повышается. Появляется стабильность и надежность навыка, снижается сознательный контроль за его элементами, т. е. возникает автоматизация навыка. Прочность рабочей доминанты поддерживается четкой сонастройкой ее нейронов на общий ритм корковой активности. Такое явление было названо А. А. Ухтомским усвоением ритма. При циклической работе ритм корковой активности соответствуеттемпу выполняемого движения: в ЭЭГпоявляются потенциалы, соответствующие этому темпу «меченыеритмы» ЭЭТ— рис. 34 (Сологуб Е. Б., 1965). Внешние раздражения на этой стадии лишь подкрепляют рабочую доминанту, не разрушая ее. Большая же часть посторонних афферентных потоков не пропускается в спинной и головной мозг: специальные команды из вышележащих центров вызывают пресинаптическое торможение импульсов от периферических рецепторов, препятствуя их доступу в спинной мозги мированных программ от случайных влияний и повышается надежность навыков. Процесс автоматизации не означает выключения коркового контроля за выполнением движения. В коре работающего человека отмечается появление связанных с движением потенциалов, специфические формы межцентральных взаимосвязей активности. Однако в этой системе центров по мере автоматизации снижается участие лобных ассоциативных отделов коры, что, по-видимому, и отражает снижение его осознаваемости. |