кейсовое задание. Документ1. Информационные системы искусственного интеллекта
Скачать 46.76 Kb.
|
Автономная некоммерческая образовательная организация высшего образования «Сибирский институт бизнеса и информационных технологий» Зачетная (экзаменационная) работа (№1 семестра) Дисциплина: Информационно – коммуникационные технологии Реферат Тема: Информационные системы искусственного интеллекта Выполнил(а): Суслова Ксения Игоревна Группа УПС-1120(2) Проверил(а): _____________________________ (Ф.И.О. преподавателя) _____________________________ (дата) Омск 2021 г. Содержание Введение…………………………………………………………………3 Глава 1 История создания искусственного интеллекта……………….4 1.1 Исторический обзор развития искусственного интеллекта……...4 Системы искусственного интеллекта……………………………...8 1.3 Построение систем искусственного интеллекта…………………11 Глава 2 Развитие искусственного интеллекта………………………..14 2.1 Знания и модели их представления………………………………14 2.2 Инженерия знаний…………………………………………………17 2.3 Модели приобретения знаний……………………………………20 Заключение…………………………………………………………….23 Список используемой литературы……………………………………25 Введение. В современной науке под исследованиями, связанными с моделированием интеллектуальных возможностей человека, понимают научное направление, занятое проблемами синтеза автоматических структур, способных решать сложные задачи информационного обеспечения различных видов человеческой деятельности. Обычно – это задачи, для которых по тем или иным причинам не существует готовых правил или примеров решения. Разработать правила решения такой задачи может человек, обладающий необходимыми знаниями, опытом и интеллектом. Но если создать компьютерную модель, в памяти которой будут содержаться знания такого человека, запрограммированы его опыт и интеллектуальные способности, необходимые для решения конкретной задачи, то этой моделью можно будет пользоваться для решения многих задач, подобных уже решенной. Среди таких задач наиболее трудными и актуальными считаются задача разработки средств общения человека с компьютерной системой, моделирующей интеллект человека, на естественном языке и задача автоматического машинного перевода с одних языков на другие при условии точной передачи смыслового и эмоционального аспектов. Дело в том, что, по мнению многих выдающихся лингвистов, интеллектуальная деятельность человека самым непосредственным образом связана с функционированием языка и мышления. Только с помощью абсолютно естественных средств общения человека с автоматом, исполняющим компьютерную программу, станет возможным создание систем, адекватно моделирующих человеческий интеллект и такие его свойства, как мышление, интуиция, сознание и подсознание… Такие системы в современной информатике получили название интеллектуальных информационных систем (ИИС). Глава 1 ИСТОРИЯ СОЗДАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 1.1 Исторический обзор развития искусственного интеллекта Исторически сложились три основных направления в моделировании искусственного интеллекта. В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д. Второй подход в качестве объекта исследования рассматривает искусственный интеллект. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека. Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Одним из первых интеллектуальных задач, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа "электронной мыши" Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла "исследовать" лабиринт, и находить выход из него. Естественно, что в машину были программно заложены правила игры так, что выбор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому критерию качества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. В настоящее время существуют и успешно применяются программы, позволяющие машинам играть в деловые или военные игры, имеющие большое прикладное значение. Здесь также чрезвычайно важно придать программам присущие человеку способность к обучению и адаптации. Одной из наиболее интересных интеллектуальных задач, также имеющей огромное прикладное значение, является задача обучения распознавания образов и ситуаций. Решением ее занимались и продолжают заниматься представители различных наук - физиологи, психологи, математики, инженеры. Проблема обучения распознаванию тесно связана с другой интеллектуальной задачей - проблемой перевода с одного языка на другой, а также обучения машины языку. При достаточно формальной обработке и классификации основных грамматических правил и приемов пользования словарем можно создать вполне удовлетворительный алгоритм для перевода, скажем научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-г. Однако для того, чтобы связно перевести достаточно большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко. Имеются также программы, обеспечивающие диалог между человеком и машиной на урезанном естественном языке. А что касается, моделирования логического мышления, то хорошей модельной задачей здесь может служить задача автоматизации доказательства теорем. В программе К. Грина и др., реализующей вопросно-ответную систему, знания записываются на языке логики предикатов в виде набора аксиом, а вопросы, задаваемые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет "интеллектуальная" программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Очень большим направлением систем искусственного интеллекта является роботехника. В чем основное отличие интеллекта робота от интеллекта универсальных вычислительных машин? Для ответа на этот вопрос уместно вспомнить принадлежащее великому русскому физиологу И. М. Сеченову высказывание: "… все бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно лишь к одному явлению - мышечному движению". Другими словами, вся интеллектуальная деятельность человека направлена в конечном счете на активное взаимодействие с внешним миром посредством движений. Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появились роботы, которые управлялись универсальными компьютерами. К примеру в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта "промышленный интеллектуальный робот". Цель этой разработки - создание манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем. Постепенно характеристики роботов монотонно улучшались, Но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру удерживают на лезвии ножа шарик от настольного тенниса. 1.2 Системы искусственного интеллекта Термин искусственный интеллект (ИИ) в 1956 году ввел Джон Маккарти на международной конференции в Дартмутском университете. В 60-ых годах прошлого столетия разработками заинтересовалось министерство обороны США — проектировались компьютеры, имитирующие человеческие рассуждения. Эти работы легли в основу современных решений. Сегодня под ИИ подразумевают особые свойства программ, которые могут выполнять сложные функции, схожие с человеческой деятельностью. Искусственный интеллект — под этим термином понимается область информатики, в рамках которой разрабатываются компьютерные программы для выполнения задач, способных имитировать человеческий подход — обнаруживать смысл, обобщать и делать выводы, выявлять взаимосвязи и обучаться с учетом накопленного опыта. Искусственный интеллект никого не заменяет, цель его применения — расширение и дополнение возможностей человека. Машинное обучение — одно из направлений искусственного интеллекта, благодаря которому воплощается ключевое свойство — самообучение на основе получаемых данных. Чем больше объем информации и ее разнообразие, тем проще ИИ найти закономерности и тем точнее будет выдаваемый результат. Нейронная сеть в контексте этой тематики — один из видов машинного обучения — особая математическая модель и ее программная реализация, которая в упрощенном виде воссоздает принципы строения и работы биологической нейронной сети. Ключевое свойство нейросети — использование опыта для самообучения, т.е. чем больше данных в распоряжении ИИ, тем меньше совершается ошибок. Обработка естественного языка (англ. Natural Language Processing, NLP) — способность программного решения или компьютера распознавать, понимать и воспроизводить привычный язык человека. Система искусственного интеллекта — пользовательское ИИ-приложение или их комплекс для решения бизнес-задач, выполнение которых традиционно оставалось за человеком. Этот класс пакетов включает: информационные системы, поддерживающие диалог на естественном языке (естественно-языковый интерфейс); экспертные системы, позволяющие давать рекомендации пользователю в различных ситуациях; интеллектуальные пакеты прикладных программ, позволяющие решать прикладные задачи без программирования. Естественно-языковый интерфейс был наиболее привлекателен для общения с ЭВМ с момента ее появления. Это позволило бы исключить необходимость обучения конечного пользователя языку команд или другим приемам формулировки своих заданий для решения на компьютере, поскольку естественный язык является наиболее приемлемым средством общения для человека. Экспертные системы впервые появились в области медицины. Возникла идея интеграции знаний экспертов в области медицины или ее отдельных разделов в некоторую электронную форму, которая позволила бы начинающему врачу иметь своеобразного электронного советника при принятии решений по тому или иному врачебному случаю. Выбор области медицины объясняется слишком большой ценой ошибок, которые касаются жизни и здоровья людей. Постепенно от области медицины эта технология распространилась и на другие сферы деятельности человека. Интеллектуальные пакеты прикладных программ позволяют, аналогично экспертным системам, предварительно создавать базу знаний, включающую совокупность знаний из той или иной области деятельности человека, а затем решать практические задачи с привлечением этих знаний. Кроме того, экспертные системы не формируют алгоритм решения задачи как в случае интеллектуальных ППП, а лишь выдают "советы" пользователю на основании его запроса. Область применения - доказательства теорем; игры; распознавание образов; принятие решений; адаптивное программирование; сочинение машинной музыки; обработка данных на естественном языке; обучающиеся сети (нейросети); вербальные концептуальные обучения. 1.3 Построение систем искусственного интеллекта Существуют различные подходы к построению систем искусственного интеллекта. Это разделение не является историческим, когда одно мнение постепенно сменяет другое, и различные подходы существуют и сейчас. Для начала кратко рассмотрим логический подход. Ведь человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных. Основой для данного логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система искусственного интеллекта, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет. Хотя правда на экзамене будут приниматься только ответы из разряда классической булевой алгебры. Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных. Под структурным подходом мы подразумеваем здесь попытки построения искусственного интеллекта путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах является нейрон. Позднее возникли и другие модели, которые в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети. НС наиболее успешно применяются в задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного применения их для построения собственно систем искусственного интеллекта, это уже ранее упоминавшийся ТАИР. Для моделей, построенных по мотивам человеческого мозга характерна не слишком большая выразительность, легкое распараллеливание алгоритмов, и связанная с этим высокая производительность параллельно реализованных НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом - нейронные сети работают даже при условии неполной информации об окружающей среде, то есть как и человек, они на вопросы могут отвечать не только "да" и "нет" но и "не знаю точно, но скорее да". Довольно большое распространение получил и эволюционный подход. При построении систем искусственного интеллекта по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д. В принципе можно сказать, что эволюционных моделей как таковых не существует, существует только эволюционные алгоритмы обучения, но модели, полученные при эволюционном подходе имеют некоторые характерные особенности, что позволяет выделить их в отдельный класс. Если бы мы смогли смоделировать работу именно этих немногих "сознательных" нервных центров. И заканчивая беглое ознакомление с различными методами и подходами к построению систем искусственного интеллекта, хотелось бы отметить, что на практике очень четкой границы между ними нет. Очень часто встречаются смешанные системы, где часть работы выполняется по одному типу, а часть по-другому Глава 2 РАЗВИТИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 2.1 Знания и модели их представления Переход от данных к знаниям — логическое следствие развития и усложнения информационно-логических структур, обрабатываемых на ЭВМ. Понятие знание не имеет какого-либо исчерпывающего определения. Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала. Интенсивное понятия — это определение его через понятие более высокого уровня абстракции с указанием специфических свойств. Другой способ определяет понятие — через перечисление понятий более низкого уровня иерархии или фактов, относящихся к определяемому понятию. Это есть определение через данные, или экстенсионал понятия. Другими словами, интенсионал — это те общие понятия и отношения, которые характеризуют множество объектов, предметов, явлений. Экстенсионал — конкретные характеристики каждого элемента этого множества понятий и отношений. Под термином «знания» при этом понимается вся совокупность информации, необходимой для решения задачи, включающая в себя, в том числе информацию о: -системе понятий предметной области, в которой решаются задачи; -системе понятий формальных моделей, на основе которых решаются задачи; -соответствии систем понятий, упомянутых выше; -текущем состоянии предметной области; -методах решения задач. При этом система знаний должна быть организована таким образом, чтобы обеспечить взаимодействие вычислительной системы с пользователем в системе понятий и терминов предметной области. Что же такое знания и чем они отличаются от данных в системах машинной обработки? Знания - это целостная и систематизированная совокупность понятий о закономерностях природы, общества и мышления, накопленных человечеством в процессе активной преобразующей производственной деятельности и направленная на дальнейшее познание и изменение объективного мира. Следовательно, интеллектуальная деятельность человека связана с поиском решений в новых, нестандартных ситуациях. Отсюда, задача называется интеллектуальной, если алгоритм ее решения априори неизвестен. При этом задача и ее решение понимаются в самом широком смысле. Решение задачи - это любая деятельность (человека или машины), связанная с выработкой планов и действий, необходимых для достижения определенной цели; выводом новых закономерностей и т. п. Любая интеллектуальная деятельность опирается на знания о предметной области, в которой ставятся и решаются задачи. Предметной областью обычно называют совокупность взаимосвязанных сведений, необходимых и достаточных для решения данной задачи или определенной совокупности задач. Знания о предметной области включают описания объектов, явлений, фактов, а также отношений между ними. В общем виде знания в ЭВМ представляются некоторой семиотической (знаковой) системой, в которой выделяются по аналогии с данными три аспекта: синтаксический, семантический и прагматический. Семантика определяет отношения между знаками и их свойствами (концептами), т. е. задает смысл или значения конкретных знаков. Прагматика определяет знак с точки зрения конкретной сферы его применения либо субъекта, использующего данную знаковую систему. В соответствии с перечисленными аспектами семиотических систем можно выделить три типа знаний: синтаксические, семантические и прагматические. Синтаксические знания характеризуют синтаксическую структуру описываемого объекта или явления, которая не зависит от смысла и содержания используемых при этом понятий. Семантические знания содержат информацию, непосредственно связанную со значениями и смыслом описываемых объектов и явлений. Прагматические знания описывают объекты и явления с точки зрения решаемой задачи, например, с учетом действующих в данной даче специфических критериев. Трем типам знаний соответствуют и три типа моделей для их представления: синтаксические, семантические и прагматические. Наличие двух последних является наиболее существенным признаком, отличающим интеллектуальные системы от всех других. Однако в настоящее время не существует баз знаний, в которых комплексно, в полной мере были бы реализованы внутренняя интерпретируемость, структуризация, связность, введена семантическая мера и обеспечена активность знаний. Все это предопределяет многообразие моделей представления данных, используемых в интеллектуальных системах, хотя некоторые из них являются производными из существующих. 2.2 Инженерия знаний Инженер знаний «извлекает» из экспертов процедуры, стратегии, эмпирические правила, которые они используют при решении задач, и встраивает эти знания в экспертную систему. Одной из наиболее сложных проблем, возникающих при создании экспертных систем, является преобразование знаний эксперта и описания, применяемых им способов поиска решений в форму, позволяющую представить их в базе знаний системы, а затем эффективно использовать для решения задач в данной предметной области. Обычно эксперт не прибегает к процедурным или количественным методам; его основные средства - аналогия, интуиция и абстрагирование. Часто эксперт даже не может объяснить, как именно им было найдено решение. В лучшем случае вы получите от него лишь описание основных приемов или эвристик, которые помогли ему успешно справиться с задачей. На инженера знаний возлагается очень сложная работа по преобразованию этих описаний в строгую, полную и непротиворечивую систему, которая позволяла бы решать прикладные задачи не хуже, чем это сделал бы сам эксперт, поскольку процесс построения базы знаний плохо структурирован и по своей природе является скорее циклическим, чем линейным. Построение базы знаний включает три этапа: 1. описание предметной области; 2.выбор модели представления знаний (в случае использования оболочки этот этап исключается); 3. приобретение знаний. Первый шаг при построении базы знаний заключается в выделении предметной области, на решение задач из которой ориентирована экспертная система. По сути, эта работа сводится к очерчиванию инженером знаний границ области применения системы и класса решаемых ею задач. При этом необходимо: определить характер решаемых задач; выделить объекты предметной области; установить связи между объектами; выбрать модель представления знаний; выявить специфические особенности предметной области. Инженер знаний должен корректно сформулировать задачу. В то же время он должен уметь распознать, что задача не структурирована, и в этом случае воздержаться от попыток ее формализовать или применить систематические методы решения. Главная цель начального этапа построения базы знаний - определить, как будет выглядеть описание предметной области на различных уровнях абстракции. Выделение предметной области представляет собой первый шаг абстрагирования реального мира. После того как предметная область выделена, инженер знаний должен ее формально описать. Формально инженер знаний должен воспользоваться той моделью, с помощью которой можно лучше всего отобразить специфику предметной области. Полученная после формализации предметной области база знаний представляет собой результат ее абстрагирования, а предметная область, в свою очередь, была выделена в результате абстрагирования реального мира. Выберите задачу, характер которой позволяет применить для ее решения технологии экспертных систем. Определите точно цель решения задачи. Вникните как можно глубже в существо задачи. Установите подцели, разбив задачу на подзадачи. Выявите специфические особенности предметной области. Найдите эксперта, специализирующегося в выбранной предметной области, и заручитесь его согласием оказать вам помощь в разработке системы, основанной на знаниях. Участвуя вместе с экспертом в решении нескольких прикладных задач, выявите приемы, которые он применяет. Подробно их опишите. Выберите инструментальные средства, необходимые вам для создания системы. Этот выбор будет зависеть от типа решаемой задачи, ваших финансовых возможностей и сложности предметной области. Постройте лабораторный прототип экспертной системы, позволяющий успешно справиться с примерами тех задач, которые вы решили совместно с экспертом. Приступите к созданию базы знаний. Выявите объекты предметной области, взаимосвязи между ними, виды иерархий, разбейте объекты на классы. Структурируйте базу знаний в соответствии с представлением эксперта о строении предметной области. Выполните необходимое число циклов по наращиванию базы знаний, каждый из которых включает добавление знаний, проверку их непротиворечивости и модификацию с целью устранения обнаруженных несогласованностей. 2.3 Модели приобретения знаний Процесс приобретения знаний - наиболее сложный этап разработки экспертной системы, поскольку инженер знаний (программист) плохо разбирается в предметной области, а эксперт не знает программирования. В связи с этим лексика, используемая экспертом, не понятна инженеру знаний, и чтобы уточнить все вопросы, требуется совместная работа эксперта и инженера знаний. Одна из наиболее сложных задач инженера знаний - помочь эксперту структурировать знания о проблеме. В выполнении всех задач, возникающих в процессе приобретения знаний, могут принимать участие эксперт, инженер знаний и экспертная система. В зависимости оттого, кто выполняет задачу, можно выделить различные модели приобретения знаний. Существуют, по меньшей мере, три уровня методов оснащения системы экспертными знаниями: Это этап создания алгоритма, взятого из литературы или придуманного специалистами или проектировщиком системы, и преобразование его в программу самими проектировщиками. В настоящее время большинство ЭС именно такие. Проектировщики системы должны путем изучения теорий в предметной области, анализа работ или через беседы с экспертами сами преобразовать знания в программы. Программа может заполнить пробелы в знаниях, например из литературы, описывая объекты или формируя этапы работ. Программа самостоятельно приобретает алгоритмические знания, «читая книги». Это интеллектуальные способности высокого уровня, которые позволяют не только каким-то образом усвоить содержание книг, но и использовать информацию как подсказку или совет. В разных работах по искусственному интеллекту взаимодействие с разрабатываемой системой осуществлял только программист. При разработке системы программист не отделял знания (данные) от механизма вывода. В его задачу входило освоить с помощью эксперта предметную область и затем при разработке системы выступать в роли и эксперта, и программиста. Модель взаимодействия эксперта с системой на ранних этапах развития искусственного интеллекта В этой модели все задачи по приобретению знаний выполнял программист. Недостаточное знание им области экспертизы не позволяло гарантировать полноту и непротиворечивость знаний. Кроме того, неизбежные модификации системы обусловливали невозможность сохранения однажды достигнутой непротиворечивости знаний. Модель приобретения знаний ЭС с помощью инженера знаний. Последующие разработки систем искусственного интеллекта основывались на отделении знаний от программ и оформлении знаний в виде простых информационных структур, называемых базами знаний. В этом случае эксперт взаимодействует с системой либо непосредственно, либо через инженера знаний. Разработка ЭС - до сих пор весьма длительный и трудоемкий процесс, наиболее узким местом которого является приобретение знаний, т. е. извлечение, структурирование, представление, отладка и сопровождение знаний. Эта проблема усугубляется тем, что существующие на сегодняшний день инструментальные средства поддерживают не все этапы разработки ЭС, а только этапы формализации, выполнения и тестирования. И в заключение рассмотрим тенденции развития ЭС, связанные с объединением ЭС с другими направлениями, - это также серьезно может повлиять на практику приобретения знаний. Объединение ЭС с системами традиционного программирования в рамках интегрированных систем. Это будет новое поколение ИС, которые должны интегрироваться со средствами автоматической разработки программного обеспечения и объектно-ориентированными базами данных. Базирование существующих ЭС на символьной обработке. Однако имеются и другие возможности. В последнее время активно разрабатываются и развиваются технологии, на базе которых создаются нейронные сети, способные решать ряд таких задач, как распознавание образов, оптимизационные задачи и др. Учитывая достоинства нейронных сетей, можно предположить их интегрирование с ЭС по крайней мере по двум направлениям: автоматизация процесса приобретения знаний для ЭС путем разработки методов, осуществляющих обобщение и преобразование информации из обученной нейронной сети в правила ЭС; использование нейронных сетей как предпроцессоров динамических ЭС, обрабатывающих входную сенсорную информацию об окружающем мире. ЗАКЛЮЧЕНИЕ Многие споры вокруг проблемы создания искусственного интеллекта имеют эмоциональную подоплеку. Признание возможности искусственного разума представляется чем-то унижающим человеческое достоинство. Однако нельзя смешивать вопросы возможностей искусственного разума с вопросом о развитии и совершенствовании человеческого разума. Повсеместное использование ИИ создаёт предпосылки для перехода на качественно новую ступень прогресса, даёт толчок новому витку автоматизации производства, а значит и повышению производительности труда. Разумеется, искусственный разум может быть использован в негодных целях, однако это проблема не научная, а скорее морально-этическая. Однако развитие кибернетики выдвигает ряд проблем, которые все же требуют пристального внимания. Эти проблемы связаны с опасностями, возникающими в ходе работ по искусственному интеллекту. Первая проблема связана с возможной потерей стимулов к творческому труду в результате массовой компьютеризации или использования машин в сфере искусств. Однако в последнее время стало ясно, что человек добровольно не отдаст самый квалифицированный творческий труд, так как он для самого человека является привлекательным. Вторая проблема носит более серьезный характер. Состоит она в следующем. Уже сейчас существуют машины и программы, способные в процессе работы самообучаться, т. е. повышать эффективность приспособления к внешним факторам. В будущем, возможно, появятся машины, обладающие таким уровнем приспособляемости и надежности, что необходимость человеку вмешиваться в процесс отпадет. В этом случае возможна потеря самим человеком своих качеств, ответственных за поиск решений. Налицо возможная деградация способностей человека к реакции на изменение внешних условий и, возможно, неспособность принятия управления на себя в случае аварийной ситуации. Встает вопрос о целесообразности введения некоторого предельного уровня в автоматизации процессов, связанных с тяжелыми аварийными ситуациями. В этом случае у человека, "надзирающим" за управляющей машиной, всегда хватит умения и реакции таким образом воздействовать на ситуацию, чтобы погасить разгорающуюся аварийную ситуацию. Таковые ситуации возможны на транспорте, в ядерной энергетике. Особо стоит отметить такую опасность в ракетных войсках стратегического назначения, где последствия ошибки могут иметь фатальный характер. Несколько лет назад в США начали внедрять полностью компьютеризированную систему запуска ракет по командам суперкомпьютера, обрабатывающего огромные массивы данных, собранных со всего света. Однако оказалось, что даже при условии многократного дублирования и перепроверки, вероятность ошибки оказалась бы столь велика, что отсутствие контролирующего оператора привело бы к непоправимой ошибке. От системы отказались. Люди будут постоянно решать проблему искусственного интеллекта, постоянно сталкиваясь все с новыми проблемами. И, видимо, процесс этот бесконечен. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Шихов Е. Варианты реализации искусственного интеллекта – ресурс Интернета, http://neural.narod.ru/ 2. Эндрю А. Искусственный интеллект – М.: Мир, 1985. с. 256 3. Квасный Р. Искусственный интеллект – ресурс Интернета, http://neural.narod.ru/ 4. Брушлинский А.В. Возможен ли искусственный интеллект? 5. Н. Винер Н. Кибернетика – М.: Наука, электронная версия, 2008. с. 148 6. Труды третьего международного симпозиума «Интеллектуальные системы» – Псков: 2008.с. 256 7. Федюкович Н. И. Анатомия и физиология: Учеб. Пособие. – Мн.: ООО «Полифакт-Альфа», 2009. с. 415 8. Соколов Е. Н., Вайткявичус Г.Г. Нейроинтеллект: от нейрона к нейрокомпьютеру – М.: Наука, 2009. с. 96 9. Цыганков В. Д. Нейрокомпьютер и его применение – М.: СолСистем, 2003.с.89 10. Ноткин Л.И. Искусственный интеллект и проблемы обучения. 11. http://bourabai.kz/einf/chapter132.htm |