Главная страница
Навигация по странице:

  • Этапы техногенеза

  • Характерные черты техногенеза XX века

  • Техносфера. Объем и состав техносферы

  • Техногенный материальный баланс

  • Ресурсы техносферы

  • Классификация ресурсов

  • реф 1. История развития глобального техногенеза


    Скачать 209.21 Kb.
    НазваниеИстория развития глобального техногенеза
    Дата20.01.2023
    Размер209.21 Kb.
    Формат файлаrtf
    Имя файлареф 1.rtf
    ТипРеферат
    #895721

    Реферат на тему «История развития глобального техногенеза»


    Содержание:


    Техногенез

    3

    Этапы техногенеза

    3

    Характерные черты техногенеза XX века

    5

    Техносфера

    8

    Объем и состав техносферы

    8

    Техногенный материальный баланс

    9

    Ресурсы техносферы

    12

    Классификация ресурсов

    14

    Список литературы

    16

    Техногенез
    Этапы техногенеза
    Современному этапу общественного развития предшествовала длительная история становления средств производства, техники и технологий - техногенез.

    Техногенез в истории цивилизации - это нарождение техники, создание человеком все более совершенных способов, орудий и устройств для воздействия на окружающий материальный мир с целью создания и потребления благ. Техногенез с экологической точки зрения - это порождение техники, последний по времени этап эволюции, обусловленный деятельностью человека и вносящий в биосферу вещества, силы и процессы, которые изменяют и нарушают ее равновесное функционирование и замкнутость биотического круговорота. Такое представление смыкается с понятием техногенеза, применяемым в геохимии.

    Начало техногенезу положил первый костер, зажженный человеком. Применение огня расширило ареал человека, дополнило собирательство и охоту новыми приемами добывания, приготовления и запасания пищи, зародило возможность будущих термотехнологий. Уже в неолите возникли условия для развития ремесел и профессионального разделения труда. Но человек еще не научился трансформировать энергию огня. Это была эпоха мускульной энергетики, когда в распоряжении человека были только собственная сила, а затем и сила прирученных животных, а также простые механизмы - преобразователи мускульной силы.

    Начиная с VIII-XI в. к ним добавляются изобретения, использующие силы воды и ветра. Наступила эпоха механоэнергетики на возобновимых ресурсах. Технические возможности человека расширились, и одновременно усилилось его давление на природу. Уже в эпоху Возрождения (XV-XVII вв.) рост населения, развитие ремесел и торговли, городов и дорог, географические открытия и завоевания, строительство, судостроение, военное дело ускорили освоение новых земель, сведение лесов и дали мощный толчок развитию рудного дела и металлургии, а затем и машин на механическом приводе. Однако наибольшее ускорение и экологическое значение техногенез приобрел с момента появления тепловых машин и начала использования ресурсов ископаемого топлива.

    Еще в преддверии промышленной революции, когда уже стал ощущаться дефицит древесного топлива и требовалось повышение эффективности земледелия (XVIII в.) одноступенчатые механические преобразователи природных сил перестали удовлетворять человека. Он постоянно нуждался в концентрации энергии, в повышении ее качества, в увеличении силы и мощности, прилагаемой к объектам деятельности. Появились первые преобразователи тепловой энергии. Наступила эпоха химической теплоэнергетики на невозобновимых энергоресурсах. Как только оказалось, что созданное и контролируемое человеком изделие - машина, состоящая из топки, котла и парового двигателя, может развивать мощность многих лошадиных сил, направление общественного прогресса и дальнейших взаимоотношений человека с природой было однозначно предрешено. Недаром эпитафия на могиле Джеймса Уатта содержит слова: «...увеличил власть человека над природой...».

    С тех пор эта власть проявляется главным образом в потреблении природных ресурсов и загрязнении среды. Эпоха истощительной химической теплоэнергетики еще не закончилась, но уже надвинулась следующая - эпоха ядерной теплоэнергетики на невозобновимых ресурсах, грозящая еще более опасным загрязнением.

    XX век. Природопокорительская экспансия человечества постоянно нарастала. В XX в. вместе с демографическим взрывом происходит еще более мощный подъем техногенеза. Он обусловлен приростом реализуемых материалов, мощностей и материально-энергетических потоков, приходящихся в среднем на каждого жителя планеты. Общий масштаб этих потоков стал сопоставим с масштабом природных процессов.
    Характерные черты техногенеза XX века
    Наиболее характерные черты всемирного техногенеза в XX в. можно представить следующим образом:

    1. За 100 лет мировое потребление энергии увеличилось почти в 14 раз (удвоение в среднем каждые 27 лет). Суммарное потребление первичных энергоресурсов превысило 400 млрд т условного топлива. С 1953 по 1972 г. ежегодный прирост энергопотребления был равен приросту валового мирового продукта и составлял 4,5%. С 1950 по 1985 г. среднее душевое потребление энергоресурсов удвоилось и достигло 68 ГДж/год. Это значит, что мировая энергетика росла вдвое быстрее, чем численность населения.

    1. В структуре топливного баланса большинства стран мира произошел переход от преобладания дров и угля к преобладанию углеводородного топлива - нефти и газа (до 65%), а также к заметному вкладу гидроэнергетики и ядерной энергетики. Хозяйственное значение начинают приобретать альтернативные энергетические технологии. С 1950 по 1995 г. в 2 раза возросло преобразование топлива в электроэнергию. Среднее душевое потребление электроэнергии достигло 2400 кВт "ч/год. Это оказало большое влияние на структурные сдвиги в производстве и быте сотен миллионов людей.

    2. Многократно увеличились добыча и переработка минеральных ресурсов - руд и нерудных материалов. Производство черных металлов возросло за столетие в 8 раз и достигло в начале 80-х годов 850 млн т/год. Еще интенсивнее был рост производства цветных металлов, в основном за счет начала и очень быстрого наращивания выплавки алюминия, составившей к концу 80-х годов 14 млн т/год. В 40-х годах началась и стремительно выросла промышленная добыча урана. Производство цемента за 90 лет выросло почти от нуля до 1 млрд т/год.

    4. В XX в. значительно вырос объем и изменилась структура машиностроения в связи со станкостроением, развитием техники двигателей внутреннего сгорания, электротехники и автоматизации. Быстро увеличивались число и единичная мощность производимых машин и агрегатов. Появились и получили быстрое развитие такие отрасли, как производство средств связи, приборостроение, радиотехника, электроника, вычислительная техника. Преобладание транспортного машиностроения выразилось в более чем тысячекратном росте производства самодвижущихся транспортных единиц. Выпуск легковых автомобилей в 1998 г. достиг 45 млн.

    5. Важной чертой современного техногенеза является интенсивная химизация всех отраслей хозяйства. За последние 50 лет было произведено и применено более 6 млрд т минеральных удобрений. Для различных целей в обиход было введено более 400 тысяч различных синтетических соединений. Начало массового производства многих продуктов крупнотоннажной химии, в частности, нефтехимии и оргсинтеза, относится к середине столетия. За 40 лет в десятки раз возросло производство пластмасс, синтетических волокон, синтетических моющих средств, пестицидов, лекарственных препаратов.

    6. Научно-техническая революция в вооружении устранила географические и природные ограничения в применении военной техники. Космос и воздушное пространство, вода и подводное пространство, земная поверхность вплоть до полюсов холода и жары стали доступны для ведения боевых действий. Появление принципиально новых видов оружия массового поражения (ОМП) и их дальнейшая разработка на качественно иных физических принципах (создание кинетического, вакуумного; лазерного, биосферного, метеорологического и других видов ОМП; создание боевых космических систем направленной энергии; разработка методов очагового разрушения озонового слоя) создали непосредственную угрозу выживаемости человечества в термоядерную эпоху. О масштабе и скорости роста техносферы в XX в. дают представление некоторые данные табл. 1.

    Таблица 5.1 Рост техносферы в XX веке

    Показатель

    Начало века

    Конец века

    Валовой мировой продукт, млрддолл./год

    60

    25000

    Энергетическая мощность техносферы, ТБт

    1

    14

    Численность населения, млрд человек

    1,6

    6,0

    Потребление пресной воды, км/год

    360

    5000

    Потребление первичной продукции биоты, %

    1

    40

    •у Площадь лесопокрытых территорий, млн км

    57,5

    50,0

    Рост площади пустынь, млн км

    -

    1,7

    Сокращение числа видов, %

    -

    -20

    Площадь суши, занятая техносферой, %

    20

    60

    техногенез химизация техносфера ресурс

    В первой половине XX в. была уверенность, что многие проблемы разрешатся с помощью техники. В течение века было зафиксировано множество открытий и изобретений, сменилось несколько поколений техники. Но убавилось ли у человека проблем?

    Техногенез, как и его инициатор - человек, стремится к занятию всевозможных «экологических ниш» и поэтому оказывает сильное влияние на экологию биосферы, вытесняя природные экологические системы и процессы. Смена этапов техногенеза, основных типов технологий происходит неизмеримо быстрее, чем сменяются «технологии» биотического круговорота в эволюции биосферы. Огромный технический потенциал человечества сам по себе обладает внутренней неустойчивостью. Из-за высокой концентрации в пределах биосферы и среды человека источников риска (все виды вооружений, отравляющие вещества и ядерное топливо) этот потенциал не только угрожает биосфере, но и включает потенциал самоуничтожения. Эта угроза не так уж легко осознается, поскольку в психологии масс она маскируется положительными результатами социального прогресса во второй половине столетия, когда возросли доходы населения, более эффективными стали системы здравоохранения и образования, улучшилось питание людей, увеличилась продолжительность жизни.

    В XX в. техногенез приобрел глобальный характер и качественно новую форму, способствуя быстрому расширению и распространению техносферы - совокупного результата хозяйственной деятельности человека.
    Техносфера. Объем и состав техносферы
    Мировое хозяйство можно рассматривать как видовую реализованную экологическую нишу человечества. По многим пространственным и потоковым параметрам она совпадает с биосферой, экологическая емкость которой ограниченна. Поэтому неизбежны конкурентные отношения между активными элементами техногенной среды и биосферы, между общественным производством и планетарной биотой. Хотя эти отношения намного сложнее, чем межвидовые взаимоотношения в природе, многие их черты выглядят как конкурентное вытеснение биосферы.

    Техносфера - это глобальная совокупность орудий, объектов, материальных процессов и продуктов общественного производства. Техносферу можно определить также как пространство геосфер Земли, находящееся под воздействием производственной деятельности человека и занятое ее продуктами.

    В XX в. человек раздвинул границы техносферы далеко за пределы биосферы - в ближний и дальний космос, в глубины земной коры, под дно океана, в субмолекулярный микромир, создав особую материально-энергетическую оболочку планеты. Она охватывает и пронизывает всю биосферу, особенно сильно на суше, и придает значительной части поверхности планеты совершенно особый облик. Вряд ли остались участки живой природы, которые не испытали бы на себе действие техногенеза. Мировое хозяйство стало не только глобальной технико-экономической, но и глобальной эколого-географической системой.

    По различным оценкам, общая масса техносферы в настоящее время составляет от 10 до 20 тыс. Гт. (Это больше биомассы живого вещества всей биосферы! - см. §. 3.4). Основную ее часть образуют скопления горной массы, отработанных руд, перемещенных грунтов, производственных отходов, оставленные сооружения, развалины и т.п., т.е. накопившееся за всю историю человечества техногенное вещество. «Действующая» Техносфера, т.е. используемые людьми в настоящее время основные производственные фонды, сооружения, орудия производства, предметы потребления, составляет малую часть общей массы - всего лишь (!) 150 - 200 Гт. В них, в свою очередь, преобладают капитальные сооружения со сроками амортизации во многие десятки лет. Наиболее активная часть техносферы, т.е. вся совокупность орудий производства, машин, механизмов, агрегатов, реакторов, действующих коммуникаций и т.п., имеет массу порядка 10-15 Гт и в настоящее время обновляется за средний срок порядка 10 лет.
    Техногенный материальный баланс
    Из 125 Гт ископаемых материалов и биомассы, мобилизуемых за год мировой экономикой, только 9,4 Гт (7,5%) преобразуется в материальную продукцию в процессе производства. Более 80% этого количества вновь возвращается в основные фонды производства. Только 1,6 Гт составляют личное потребление всех людей, причем 2/3 этой массы относится к нетто-потреблению продуктов питания.

    Наиболее серьезные проблемы связаны с потреблением биоресурсов, технической энергетикой и промышленным производством. Ежегодное изъятие не менее 10 Гт сухого вещества биомассы в виде сельскохозяйственной продукции, древесины и морепродуктов составляет более 7% продукции фотосинтеза на суше. Но кроме этого, за счет антропогенного уменьшения биомассы и продуктивности естественных экосистем, замещения их агроценозами, вырубки лесов, опустынивания, техногенной деградации и т.п. человек косвенно переводит в антропогенный канал еще 27-30% первичной продукции экосистем суши, в целом снижая продуктивность земной биосферы примерно на 12%. Именно это расценивается как самое главное вмешательство человеческого хозяйства в природные процессы.

    В добывающей и перерабатывающей промышленности мира за год образуется более 100 Гт твердых и жидких отходов; из них около 15 Гт попадает со стоками в водоемы, а остальное количество - 90 Гт/год добавляется к отвалам пустой породы, золо- и шлакоотвалам, к другим хранилищам и захоронениям промышленных отходов, к свалкам. Сжигание 12 Гт ископаемого топлива, сжигание и биологическое окисление более 7 Гт изымаемой растительной биомассы и другие производственные окислительные процессы отнесены в балансе к массообмену в атмосфере. Они сопряжены с потреблением 40 Гт кислорода и возвращением в атмосферу 52 Гт углекислого газа и других окислов. Вместе с ними в воздух попадают продукты неполного сгорания, различные пыледымовые аэрозоли, соли, а также значительная масса разнообразных летучих органических веществ, выделяющихся при производственных процессах и работе транспорта. Общая масса этих примесей достигает 1 Гт в год. Одновременно в среду выделяется более 530 ЭДж техногенной теплоты. Более подробно техногенные эмиссии и их воздействия на природные системы и окружающую среду рассмотрены в следующей главе.

    Наиболее существенным отличием техногенного массообмена от биотического круговорота является то, что техносферный круговорот веществ существенно разомкнут и в количественном, и в качественном отношении. Поскольку техногенный массообмен составляет заметную часть глобального круговорота веществ, своей разомкнутостью он нарушает необходимую высокую степень замкнутости биотического круговорота, которая выработана в процессе длительной эволюции и является важнейшим условием стационарного состояния биосферы. Это означает очень серьезное нарушение биосферного равновесия.

    О степени разомкнутости техногенного круговорота можно судить по его вмешательству в глобальный круговорот углерода. Непосредственная техногенная эмиссия С02 в атмосферу составляет 30 Гт/год. К этому количеству добавляется еще по меньшей мере 3,5 Гт С02, выделяющегося в результате изъятия фитомассы и эрозии почвы. Кроме этого, судя по массе сильных кислот, образующихся из техногенных оксидов серы и азота и выпадающих на землю в виде кислотных дождей, вытесняемый ими С02 из карбонатов и органики почвы дает еще минимум 1,5 Гт углерода. Таким образом, в результате непосредственного и косвенного вмешательства в природный круговорот углерода общее количество С02, ежегодно выбрасываемого в атмосферу, достигло 35 Гт и на 10% увеличило планетарный обмен углерода.

    Казалось бы, при очень высокой замкнутости биосферного круговорота углерода и огромной буферной емкости биосферы и океана по связыванию атмосферного избытка С02 это увеличение не должно приводить к нарушению равновесия. Более того, можно было бы ожидать улучшения углеродного питания растений и повышения их продуктивности. Но в действительности содержание С02 в атмосфере на протяжении последних десятилетий неуклонно увеличивается. Следовательно, буферные системы биосферы и океана не справляются с регулированием равновесия потоков С02. Это можно объяснить снижением ассимиляционного потенциала земной флоры (в основном из-за быстрого сокращения площади лесов) и значительным загрязнением суши и поверхности океана.

    Нарастание концентрации СОг в атмосфере вместе с другими техногенными газами усиливает парниковый эффект, т.е. поглощение нижним слоем атмосферы инфракрасного излучения падающей на землю солнечной радиации. Это приводит к некоторому повышению средней температуры атмосферы, гидросферы и поверхности земли - так называемому глобальному потеплению. За последние 30 лет для нижних слоев атмосферы и поверхности суши оно составило не менее 0,6°, что соответствует прибавке колоссального количества энергии. Повышение температуры способствует дополнительному выделению углекислого газа из воды, почвенной влаги, тающих льдов, отступающей вечной мерзлоты, поскольку растворимость СОг, в воде заметно снижается с повышением температуры. Кроме этого, техногенные кислотные осадки помимо прямого негативного действия на биоту вытесняют СОг из карбонатов почвы, вод и грунтов. Возник порочный круг самоусиления парникового эффекта. Таким образом, современная техносфера не только вытесняет и замещает биосферу, но и нарушает средорегулирующую функцию биосферы, что еще опаснее. Эта опасность усугубляется тем, что техносфера не может существовать без биосферы, так как в огромной мере пользуется ее средой и ее ресурсами.
    Ресурсы техносферы
    Природные ресурсы являются основной частью экономических ресурсов, т.е. кроме факторов среды они являются факторами производства.

    Ресурсы - это вещества, материалы, силы и потоки вещества, энергии и информации, которые:

    • образуют входные звенья природных или хозяйственных циклов, являются их необходимыми участниками и, в связи с этим, носителями функции полезности;

    • имеют измеряемое количественное выражение: массу, объем, плотность, концентрацию, интенсивность, мощность, стоимость;

    • при изменениях во времени подчиняются фундаментальным законам сохранения. Все естественные материальные и энергетические ресурсы, используемые человеком, принято называть природными ресурсами. При этом часто забывают, что большинство из них является ресурсами не только для человека, но в основном и в первую очередь ресурсами живой природы.
    Классификация ресурсов
    Существует несколько классификаций природных ресурсов.

    Естественная классификация основана на разделении ресурсов по компонентам природной среды: земельные, минеральные, водные, климатические, растительные, животного мира и т.п.

    В хозяйственной классификации ведущее значение имеет отраслевая принадлежность: ресурсы топливно-энергетического комплекса, металлургии, химической промышленности, сельского хозяйства, лесоперерабатывающей промышленности и т.д.

    С эколого-экономической точки зрения важна классификация природных ресурсов по признакам исчерпаемости (рис. 5.3). К практически неисчерпаемым (в пределах времени существования техносферы) часто относят космические (солнечную радиацию, гравитацию) и планетарные ресурсы (наличие атмосферы, гидросферы, геотермальной энергии). Однако в конкретных земных и, тем более, техносферных условиях XX в. действует закон ограниченности (исчерпаемости) всех природных ресурсов.

    Возобновимые ресурсы - это вещества и силы, которые создаются на Земле благодаря текущему потоку солнечной энергии: тепло, атмосферная влага, вода осадков и всех пресных вод, течение рек и гидроэнергия, энергия ветров, волн и течений, почва, все живые организмы, биосфера, наконец, сам человек. Для различных возобновимых, особенно для биологических ресурсов, существуют пределы скорости изъятия и степени исчерпания, после превышения которых уже невозможно возобновление, так как нарушается его естественный режим. Чаще всего это относится к численности популяции или биоразнообразию экосистем. Но это может быть отнесено и к биосфере в целом.

    Разумеется, исчерпаемы и все невозобновимые ресурсы. К ним относится подавляющее большинство полезных ископаемых: горные материалы, руды, минералы, осадочные породы, ископаемое топливо. Правда, некоторые минеральные ресурсы и сейчас медленно образуются при геохимических процессах в недрах, глубинах океана или на поверхности земной коры - залежи солей, руды переходных металлов, железомарганцевые конкреции, известняки, продукты выветривания, но не уголь и углеводороды. В отношении полезных ископаемых большое значение имеют доступность и качество ресурса, а также количественное соотношение между оцененными потенциальными, реальными разведанными и эксплуатационными запасами.

    Принципиальное отличие техносферы от биосферы заключается в том, что биосфера использует исключительно контролируемые ею возобновимые ресурсы, тогда как человек в техносфере, кроме захвата значительной части биосферных ресурсов, использует и огромную массу невозобновимых ресурсов, значительная часть которых не нужна биоте биосферы, но влияет на ее функционирование.

    Несмотря на указанное отличие ресурсы биосферы и техносферы непрерывно взаимодействуют между собой. Преждевременное изъятие погребенных в литосфере веществ и ввод их в оборот нарушает оптимальный баланс круговорота веществ в природе. Кроме того, использование невозобновимых ресурсов всегда влечет за собой цепь частных последствий, важных для биосферы: преобразование ландшафтов, изъятие площадей природных экосистем, деградацию почв, изменение распределения грунтовых вод и др.

    Хотя человечество на протяжении всей своей истории сталкивается с ограниченностью природных ресурсов, оно до сих пор не осознало последствий их бесконтрольного использования. Ни на макро-, ни на микроуровнях в экономике не используется показатель природоемкости. В настоящее время экономика мирового хозяйства чрезвычайно природоемка, что и обусловливает техногенный тип развития и истощение природных ресурсов.

    Список литературы


    1. Агаджанян НА; Торшин В.И. Экология человека. - М.: КРУК, 1994.

    2. Акимова Т.А., Кузьмин А.П., Хаскин В.В. Экология. М., 2001.

    3. Акимова Т.А., Хаскин В.В. Экология: Учебник для вузов. - М.: ЮНИТИ, 1998.

    4. Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России: Учеб. и справочн. пособие - М.: Финансы и статистика, 1995.

    5. Реймерс Н.Ф. Экология (теории, законы, правила, принципы и гипотезы). - М.: Изд-во журнала «Россия молодая», 1994.


    написать администратору сайта