Главная страница
Навигация по странице:

  • История возникновения математической логики.

  • История возникновения математической логики. История возникновения математической логики


    Скачать 16.6 Kb.
    НазваниеИстория возникновения математической логики
    Дата14.12.2022
    Размер16.6 Kb.
    Формат файлаdocx
    Имя файлаИстория возникновения математической логики.docx
    ТипЗакон
    #844395

    История возникновения математической логики.

    Логика - это наука, изучающая формы и законы мышления, закономерности мыслительного процесса. Слово «логика» произошло от греческого logos, что означает слово, понятие, рассуждение, разум. Законы и правила формальной логики необходимо знать для построения правильных рассуждений.

    Отличительная особенность правильного вывода состоит в том, что из истинных исходных утверждений всегда получаются истинные заключения. Это позволяет из одних истин получать другие с помощью только рассуждения, разума и без обращения к опыту. Логика состоит из большого числа логических систем, описывающих отдельные типы содержательных рассуждений. Эти системы принято делить на классическую логику, включающую классические логику высказываний и логику предикатов, и неклассическую логику, в которую входят модальная логика, многозначная логика и др. Все эти частные системы, пользующиеся одними и теми же методами исследования при описании отдельных логических процессов, соединяясь вместе, и образуют логику как единую науку. Для любой логики характерно отвлечение от конкретного содержания высказываний или умозаключений и оперирование только их формальным содержанием, использование единого языка символов и формул.

    История возникновения математической логики.

    Математическая логика тесно связана с логикой и обязана ей своим возникновением. Основы логики, науки о законах и формах человеческого мышления, были заложены величайшим древнегреческим философом Аристотелем (384--322 гг. до н. э.), который в своих трактатах обстоятельно исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления, в том числе законы противоречия и исключения третьего. Вклад Аристотеля в логику весьма велик, недаром другое ее название - Аристотелева логика. Еще сам Аристотель заметил, что между созданной им наукой и математикой (тогда она именовалась арифметикой) много общего. Он пытался соединить две эти науки, а именно свести размышление, или, вернее, умозаключение, к вычислению на основании исходных положений. В одном из своих трактатов Аристотель вплотную приблизился к одному из разделов математической логики - теории доказательств. Следует отметить, что идея использования двух символов для кодирования информации очень стара. Австралийские аборигены считали двойками, некоторые племена охотников-сборщиков Новой Гвинеи и Южной Америки тоже пользовались двоичной системой счета. В некоторых африканских племенах передают сообщения с помощью барабанов в виде комбинаций звонких и глухих ударов. Знакомый всем пример двух символьного кодирования - азбука Морзе, где буквы алфавита представлены определенными сочетаниями точек и тире.

    После Лейбница исследования в этой области вели многие выдающиеся ученые, однако настоящий успех пришел здесь к английскому математику-самоучке Джорджу Булю (1815--1864), целеустремленность которого не знала границ. Материальное положение родителей Джорджа (отец которого был сапожным мастером) позволило ему окончить лишь начальную школу для бедняков. Спустя какое-то время Буль, сменив несколько профессий, открыл маленькую школу, где сам преподавал. Он много времени уделял самообразованию и вскоре увлекся идеями символической логики. В 1847 году Буль опубликовал статью «Математический анализ логики, или Опыт исчисления дедуктивных умозаключений», а в 1854 году появился главный его труд «Исследование законов мышления, на которых основаны математические теории логики и вероятностей».

    Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую ко всевозможным объектам, от чисел и букв до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому, как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Отдельные положения работ Буля в той или иной мере затрагивались и до, и после него другими математиками и логиками. Однако сегодня в данной области именно труды Джорджа Буля причисляются к математической классике, а сам он по праву считается основателем математической логики и тем более важнейших ее разделов - алгебры логики (булевой алгебры) и алгебры высказываний.


    написать администратору сайта