Тааузщал. Урок 12-13-14-15 Практическая работа 1 Изучение устройства транс. Изучение устройства трансформатора
Скачать 1.2 Mb.
|
Практическая работа № 1 Тема: Изучение устройства трансформатора Формируемые ОК, ПК: ОК 1; ОК 2; ОК 3; ОК 4; ОК 5; ОК 6; ОК 7; ОК 8; ОК 9 ПК 1.1; 1.2; 1.3. ЛР1; ЛР4; ЛР9; ЛР10 Цель работы: Изучить устройство и принцип работы трансформатора. Литература. Инструктивно-методические указания Краткие теоретические сведения Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п. Т рансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины. В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки наматывают медным изолированным проводом и размещают на магнитопроводе. О дна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже. 1. Принцип работы трансформатора. Принцип работы трансформатора основан на явлении электромагнитной индукции. Е сли на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2. При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток. В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е. Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo. Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше. Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2. Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит. Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным. Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим. Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода. Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке. 2. Устройство трансформатора. 2.1. Магнитопровод. Магнитные материалы. Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки. М агнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями. Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки. Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты. Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки. Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц. Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора. Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п. Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях. Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора. 2.2. Типы магнитопроводов. Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов. Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов. Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным. Стержневые. В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения. Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности. Броневые. В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение. Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы. Тороидальные. Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита. Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой. Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора. Силовые трансформаторы в энергетике устанавливаются на заранее подготовленные стационарные площадки с прочными фундаментами. Для размещения на грунте могут монтироваться рельсы и катки. Электрическое оборудование трансформатора размещается внутри металлического корпуса, изготовленного в форме герметичного бака с крышкой. Он заполнен специальным сортом трансформаторного масла, которое обладает высокими диэлектрическими свойствами и, одновременно, используется для отвода тепла от деталей, подвергаемых большим токовым нагрузкам. Внутри бака установлен сердечник 9, на который надеты катушки обмотки низшего напряжения 11 и высшего напряжения 10. Передняя стенка трансформатора - 8. Выводы обмотки высшего напряжения соединены с вводами, проходящими через фарфоровые изоляторы 2. Выводы обмотки низшего напряжения также соединены с вводами, проходящими через изоляторы 3. Крышка привинчена болтами к верхней кромке бака и между ними проложена резиновая прокладка, чтобы масло не могло протекать в стык между баком и крышкой. В стенке бака просверлено два ряда отверстий, в них вварены тонкостенные трубки 7, через которые протекает масло. На крышке расположена рукоятка 1. Вращая ее, можно переключать витки обмотки высшего напряжения для регулировки напряжения при нагрузке. К крышке приварены кронштейны, на которых установлен бачок 5, называемый расширителем. Он имеет указатель 4 со стеклянной трубкой для наблюдения за уровнем масла и пробку с фильтром 6 для сообщения с окружающим воздухом. Передвигается трансформатор на катках 12, оси которых проходят через балки, приваренные ко дну бака. Обмотки трансформатора при протекании больших токов подвергаются действию сил, которые стремятся их деформировать. Для повышения прочности катушек их наматывают на изоляционные цилиндры. Если в круге расположить стержень квадратного сечения, то площадь круга используется не полностью. Поэтому стержни трансформаторов делают ступенчатого сечения путем сборки из листов разной ширины. Режимы работы При эксплуатации и проверках силовой трансформатор может оказаться в рабочем или аварийном режиме. Рабочий режим создается подключением источника напряжения к первичной обмотке, а нагрузки — ко вторичной. При этом величина тока в обмотках не должна превышать расчетных допустимых значений. В этом режиме силовой трансформатор должен длительно и надежно питать все подключенные к нему потребители. Разновидностями рабочего режима являются опыт холостого хода и короткого замыкания, создаваемые для проверок электрических характеристик. Холостой ход создается размыканием вторичной цепи для исключения протекания в ней тока. Он используется для определения: КПД; коэффициента трансформации; потерь в стали на намагничивание сердечника. Опыт короткого замыкания, создается шунтированием накоротко выводов вторичной обмотки, но с заниженным напряжением на входе в трансформатор до величины, способной создать вторичный номинальный ток без его превышения. Этот способ используют для определения потерь в меди. К аварийным режимам трансформатора относятся любые нарушения его работы, приводящие к отклонению рабочих параметров за границы допустимых для них значений. Особенно опасным считается короткое замыкание внутри обмоток. Аварийные режимы приводят к пожарам электрооборудования и развитию необратимых последствий. Они способны причинить огромный ущерб энергосистеме. Поэтому для предотвращения подобных ситуаций все силовые трансформаторы снабжаются устройствами автоматики, защит и сигнализации, которые предназначены для поддержания нормальной работы первичной схемы и быстрого отключения ее со всех сторон при возникновении неисправностей. Трансформаторы выпускаются стандартных мощностей: 10, 16, 25, 40 и 63 кВ•А с увеличением каждого из этих значений в 10, 100, 1000 и 10000 раз. Трансформаторы разделяются по способу охлаждения на масляные, сухие, с дутьевым и водомасляным охлаждением; по исполнению — для внутренней и наружной установок, герметичные и уплотненные; по числу фаз — одно- и трехфазные; по числу обмоток — двух- и трехобмоточные; по способу регулирования напряжения — под нагрузкой и при отключенном напряжении. Сухие (без масла) трансформаторы выпускаются мощностью до 1600 кВ А и напряжением до 15, 75 кВ с естественным охлаждением. Достоинством сухих трансформаторов является их пожаробезопасность. Для масляных трансформаторов с естественным масляным охлаждением, используемых в закрытых помещениях, обеспечивается непрерывная вентиляция для отвода нагретого и доступа холодного воздуха. Основными параметрами трансформаторов являются: номинальные напряжения обмоток, номинальная мощность, номинальный ток и номинальная нагрузка обмоток. Обмотки первичного и вторичного напряжения трехфазных двухобмоточных трансформаторов соединяют по схемам звезда-звезда или звезда-треугольник. В зависимости от направления намотки обмотки, последовательности соединений фазных обмоток и чередования фаз при соединении в звезду или треугольник можно получить ту или иную группу соединений. Для поддержания необходимого уровня напряжения потребителей у трансформаторов с регулировкой напряжения (рис. 1, а и б) проводят изменение коэффициента трансформации с помощью переключателей ответвлений обмоток. Регулирование напряжения проводится в пределах ±5 %. Трансформаторы с РПН (регулирование под нагрузкой) имеют большое число ступеней и более широкой диапазон регулирования (до 20%). Рис. 1. Схемы трансформаторов с РПН без реверсирования (а) и с реверсированием (б): 1 — основная обмотка; 2 — регулировочная обмотка; 3 — устройство переключения; 4 — переключатель (реверсор). Часть обмотки ВН с ответвлениями называется регулировочной обмоткой. Расширение регулировочного диапазона без увеличения числа отводов достигается применением схем с реверсированием (рис. 1, б). Переключатель-реверсор 4 позволяет присоединить регулировочную обмотку 2 к основной 1 согласно или встречно, благодаря чему диапазон регулирования удваивается. Устройство 3 PПН обычно включается со стороны нейтрали X. что позволяет выполнять их с пониженной изоляцией. Устройство РПН состоит из контактора, разрывающего и замыкающего цепь рабочего тока; избирателя (переключателя), контакты которого размыкают и замыкают электрическую цепь без тока; реактора или резистора; приводного механизма (рис. 2). Рис. 2. Последовательность работы переключающих устройств с РПН: Р - реактор; К1, К2 - контакторы; РО — регулировочная обмотка; П — переключатель. Очередность в работе контакторов и избирателей обеспечивается приводным механизмом с реверсивным пускателем. В нормальном режиме работы через реактор Р проходит ток нагрузки, а в процессе переключения ответвлений — реактор ограничивает значение тока Iцирк. Контактор, в котором при переключении возникает дуга на контактах, помещают в отдельном масляном баке. Управление устройством РПН осуществляется автоматически от реле напряжения или дистанционно диспетчером. На маслоуказателе расширителя нанесены три контрольные черты, соответствующие уровню масла при температуре -45, +15, +40. Рис. 3. Расположение на крышке трансформатора расширителя, газового реле и предохранительной трубы: 1 — расширитель; 2 — газовое реле; 3 — предохранительная труба. Газовое реле (рис. 3) служит для сигнализации или отключения трансформатора в случаях внутренних повреждений. Разлагающиеся под действием высоких температур масло, дерево или изоляция выделяют газы, которые воздействуют на поплавки с контактами газового реле. В случае отказа работы газового реле в трансформаторе создается повышенное давление, которое разрушает мембрану предохранительной трубы и выбрасывает газы и масло наружу, предотвращая опасность взрыва бака. Мембрана трубы изготовляется из стекла или фольги. Контрольные вопросы Поясните принцип работы трансформатора. Каковы устройство магнитопровода трансформатора и применяемые магнитные материалы? Устройство и режимы работы силовых трансформаторов. Как в силовых трансформаторах производится регулировка напряжения вторичной обмотки? Назначение газового реле и предохранение трансформатора от аварийной разгерметизации. |