Главная страница

Конспект лекций (3,4 семестр) для студентов 1 курса


Скачать 0.72 Mb.
НазваниеКонспект лекций (3,4 семестр) для студентов 1 курса
Дата08.02.2022
Размер0.72 Mb.
Формат файлаdocx
Имя файлаElektronnaya_tekhnika_MREP.docx
ТипКонспект
#354811
страница2 из 5
1   2   3   4   5

3.1.3 Вольт-амперная характеристика перехода. Выпрямляющий и омический контакты
Зависимость тока через переход от величины приложенного напряжения называется вольт-амперной характеристикой (ВАХ).

IПР, mA


IДИФ=IОНЗ

IО

UОБР, В 0 UПР, В



IДР=IННЗ

IОБР, мкА
Прямая и обратная ветви ВАХ изображены в разных масштабах. При прямом включении перехода его сопротивление мало, поэтому ток через переход резко возрастает по экспоненте с ростом прямого напряжения. При обратном включении перехода его сопротивление велико, поэтому ток через переход будет мал и равен тепловому .

Прямое напряжение, подаваемое на переход, не должно превышать 1В!

Обратное напряжение, подаваемое на переход, может достигать 20В.

Вывод:p-n переход обладает односторонней проводимостью, т.е. проводит ток только в одном направлении – прямом.

Контакт с односторонней проводимостью называется выпрямляющим контактом. Таким образом, p-n переход является выпрямляющим контактом.

Кроме выпрямляющих контактов существуют контакты металл-полупроводник (Ме-п/п), называемые омическими, т.к. ток, протекающий через такой контакт подчиняется закону Ома ( ). Получают омические контакты путем напыления тонкой пленки металла на полупроводник. Характерная особенность омических контактов – пропускание тока в обоих направлениях (и прямом, и обратном). Омические контакты широко распространены в электронной технике, т.к. используются для присоединения внешних выводов к кристаллам полупроводников.
омический p n омический

к онтакт контакт

UПИТ
3.2 Емкости p-n перехода
Барьерная емкость

p n

do

d o – толщина перехода
В p-n переходе имеется разность концентраций: в p-области много дырок, а в n-области их мало, в n-области много электронов, а в р-области их мало. Наличие разности концентраций приводит к диффузии: дырки из р-области переходят в n-область, в обратном направлении движутся электроны. В результате диффузии в р-области появляются избыточные (не скомпенсированные) отрицательные ионы примеси, и она заряжается отрицательно. В n-области появляются избыточные положительные ионы примеси, и она заряжается положительно. Возникает разность потенциалов – потенциальный барьер.

Данный переход можно рассматривать, как плоский конденсатор, обкладками которого являются p-и n-области, а диэлектриком – приконтактная область, имеющая повышенное сопротивление. Емкость такого конденсатора называется барьерной, т.к. она обусловлена наличием потенциального барьера.

–q +q

В равновесном состоянии перехода, т.е. когда ЕВНЕШН=0, барьерная емкость зависит от площади p-n перехода, диэлектрической проницаемости полупроводника и толщины запирающего слоя:

, где

- относительная и абсолютная диэлектрическая проницаемость.

При подаче обратного напряжения толщина перехода возрастает (обкладки конденсатора как бы раздвигаются), а, следовательно, емкость этого конденсатора уменьшается:

, где

- барьерная емкость перехода при наличии обратного напряжения;

- барьерная емкость перехода при отсутствии внешнего напряжения;

- потенциальный барьер перехода при отсутствии внешнего напряжения;

UОБР - обратное напряжение, подаваемое на переход.
Диффузионная емкость
При прямом включении перехода возникает еще одна емкость – диффузионная.

Прямое напряжение, подаваемое на переход, обеспечивает более интенсивный процесс диффузии основных носителей заряда в соседние области. Это приводит к тому, что пришедшие в большом количестве в соседние области заряды не успевают прорекомбинировать с зарядами противоположного знака и накапливаются, образуя объемные заряды. Чем больше прямое напряжение, тем больше величина этих объемных зарядов.

p n

ОНЗ + +

_ _ Ө ОНЗ + +

_ _

ЕВН

ЕВНЕШН


UПР
о о
Изменение объемного заряда в зависимости от приложенного прямого напряжения характеризует емкость, называемая диффузионной (т.к. обусловлена диффузией ОНЗ) и определяемая формулой:

или , где

- изменение прямого напряжения;

- изменение объемного заряда.
3.3 Пробой p-n перехода
Пробойэто резкое возрастание обратного тока перехода при условии, что обратное напряжение превысит максимально допустимое значение, т.е.
справочная величина

Обратная ветвь ВАХ при пробое:

Uобрmax IО 0

UОБР

1 1- электрический пробой

2 - тепловой пробой

2 IОБР

Виды пробоев:


Пробой


Обратимый Необратимый

процесс процесс


Электрический

пробой

Тепловой

пробой




Лавинный

пробой

Туннельный

пробой


3.3.1 Тепловой пробой
Тепловой пробой возникает за счет нарушения теплового баланса между теплом, которое выделяется в переходе, и теплом, которое отводится (рассеивается корпусом прибора):

( количество теплоты)

С ростом обратного напряжения выделяемая в переходе мощность увеличивается , что приводит к разогреву перехода и усилению термогенерации (генерация, вызванная повышением температуры) пар носителей заряда, т.е. к увеличению концентрации ННЗ, а, следовательно, к росту обратного тока. Рост обратного тока сопровождается дальнейшим увеличением выделяемой мощности, т.е. большим разогревом перехода и более интенсивной термогенерацией и т.д., т.е. идет нарастающий процесс:

и т.д.

В итоге переход перегревается и разрушается (разрушается кристаллическая решетка) – процесс необратимый.

Процесс называется обратимым, если при уменьшении обратного напряжения до допустимого значения восстанавливается нормальный режим работы перехода, т.е. обратный ток принимает стационарное значение теплового тока .

Для обеспечения теплового режима полупроводниковых приборов используются радиаторы, изготавливаемые из материалов с высокой теплопроводностью (например, Al, Cu).
3.3.2 Электрический пробой
Тепловому пробою предшествует электрический пробой.

При электрическом пробое обратный ток перехода резко возрастает под действием сильного электрического поля.

а) Лавинный пробой
Лавинный пробой возникает в так называемых «толстых» переходах. Под действием сильного электрического поля электроны, двигаясь с большой скоростью, приобретают кинетическую энергию, достаточную для ударной ионизации нейтральных атомов кристаллической решетки.

Механизм ударной ионизации: свободный электрон, обладающий большой кинетической энергией, ударяясь о нейтральный атом, передает валентным электронам этого атома часть своей энергии, и они отрываются от атома, становясь свободными. Атом при этом ионизируется.

Возникшие в результате ионизации свободные электроны также разгоняются электрическим полем, ударяются о новые атомы кристаллической решетки и выбивают из них следующую партию электронов. Процесс нарастает лавинообразно (как снежный ком) – отсюда и название пробоя – «лавинный».

Для ударной ионизации необходимо поле с напряженностью:

В результате ударной ионизации возникает размножение НЗ, и обратный ток резко возрастает – возникает лавинный пробой.

На лавинном пробое работают такие полупроводниковые приборы, как стабилитроны, тиристоры, лавинные транзисторы и др.
б) Туннельный пробой
Если напряженность электрического поля достигнет значения и переход будет очень тонкий (с толщиной запирающего слоя ), возможен туннельный пробой – переход электронов из валентной зоны (ВЗ) одного полупроводника в зону проводимости (ЗП) другого полупроводника без изменения энергии.

Механизм туннельного пробоя:

Электрон, движущийся в сторону очень узкого перехода, под действием очень сильного поля пройдет через переход, как через туннель, и займет свободный уровень с такой же энергией по другую сторону перехода.

Таким образом, обязательным условием туннельного пробоя, кроме сильного поля и тонкого перехода, является наличие свободного уровня по другую сторону перехода. При этом ВЗ одного полупроводника должна находиться на одном уровне с ЗП другого полупроводника.

На туннельном пробое работают туннельные диоды.

Туннельный и лавинный пробои обратимы – снятие обратного напряжения полностью восстанавливает свойства p-n перехода.
4 Полупроводниковые диоды
Полупроводниковый диод – это прибор с двумя выводами, принцип действия которого основан на использовании свойств p-n перехода.

Обозначение:

VD

Стрелка указывает направление прямого тока . Диод – это несимметричный p-n переход.

4.1 Выпрямительный диод

Назначение выпрямительного диода – преобразование переменного напряжения в постоянное.

Работа выпрямительного диода основана на его односторонней проводимости.

Схема однополупериодного выпрямителя

Т рансформатор служит для понижения входного напряжения до значения . U2



0 + t


Т


IД

0 t

UВЫХ

заряд

разряд

0 t

При положительной полуволне напряжения диод находится под прямымнапряжением, сопротивление диода мало, через него протекает ток , который создает на нагрузке падение напряжения (закон Ома). При отрицательной полуволне напряжения диод находится под обратным напряжением, его сопротивление велико, через диод ток не протекает. При этом и падение напряжения на нагрузке будет .

Таким образом, через диод и нагрузку протекает пульсирующий ток (то он есть, то его нет).

Для сглаживания пульсаций параллельно сопротивлению нагрузки подключают блокировочный конденсатор .

Механизм сглаживания пульсаций:

При положительной полуволне конденсатор быстро заряжается через малое сопротивление открытого диода.

При отрицательной полуволне конденсатор медленно разряжается через относительно большое сопротивление нагрузки.

В результате выходное напряжение приближается к постоянному напряжению.

Чем больше емкость блокировочного конденсатора и чем больше сопротивление нагрузки, тем меньше пульсации.

Емкость блокировочного конденсатора выбирается из условия: реактивное сопротивление конденсатора должно быть много меньше сопротивления нагрузки, т.е. .

В электронной технике понятие «много» означает на порядок, поэтому данное неравенство можно переписать: .

Учитывая, что , получим: .

Отсюда выражаем или

, где
Таким образом, зная частоту входного сигнала и сопротивление нагрузки, легко определить емкость блокировочного конденсатора.
Конденсатор пропускает переменный ток и не пропускает постоянный.
Докажем это. Для постоянного тока , следовательно, реактивное сопротивление конденсатора в этом случае будет стремиться к бесконечности, а через бесконечно большое сопротивление ток протекать не может.
4.2 Стабилитрон
Стабилитрон – это полупроводниковый диод, у которого обратная ветвь ВАХ используется для стабилизации напряжения.

Рабочим участком стабилитрона является область электрического пробоя, а рабочим напряжением – напряжение пробоя.

В качестве стабилитронов используют кремниевые диоды, обладающие бо́льшей устойчивостью к тепловому пробою.

Обозначение: Пример: КС182А

ВАХ стабилитрона:

IПР

UОБР UСТ НОМ 0 1В UПР

IСТ НОМ

IОБР
Одним из характерных параметров стабилитрона является температурный коэффициент напряжения стабилизации:

- напряжение стабилизации при температуре ;

- напряжение стабилизации при температуре ;

- разность температур.

показывает относительное изменение напряжения стабилизации при изменении температуры на 1К.

бывают больше и меньше нуля. Обычно используют стабилитроны с , работающие на лавинном пробое.

Иногда в качестве рабочего участка стабилитрона используется прямая ветвь ВАХ, имеющая - такие стабилитроны называются стабисторами.

Для компенсации температурных изменений последовательно со стабилитроном включают 1 или несколько стабисторов:

- стабилитрон ( )

- стабистор ( )

Созданные по данному принципу стабилитроны называются прецизионными (например, КС191А). Прецизионные стабилитроны обладают высокой температурной стабильностью и высокой точностью стабилизации. Используются они в качестве источников опорного (эталонного) напряжения в цифровых схемах.

Вместо стабистора можно использовать обычный выпрямительный диод, у которого прямая ветвь ВАХ также имеет .

Применение стабилитронов:

  • Стабилизаторы напряжений.

  • Источники опорного напряжения в цифровых схемах.


4.3 Фотодиод

Фотодиоды – это полупроводниковые диоды, преобразующие световую энергию в энергию электрическую.

Обозначение:

Изготавливают фотодиоды из германия и кремния. Работает фотодиод при обратном включении.

Устройство:

P-n переход помещается в металлический корпус со стеклянным окном.

Принцип работы:

Принцип работы фотодиода основан на внутреннем и внешнем фотоэффекте. Когда диод не освещен, в цепи протекает обратный темновой ток небольшой величины . При освещении фотодиода происходит фотогенерация пар НЗ (т.е. возникает внутренний фотоэффект – валентные электроны, получив световую энергию фотонов, переходят из ВЗ в ЗП). Проводимость диода при этом возрастает, следовательно, возрастает обратный ток фотодиода до значения . Разность между световым и темновым токами называется фототоком:

Ф отодиод может включаться в схему как с внешним источником питания (фотодиодный режим), так и без него (ве́нтильный режим).


(Используется при слабых световых (Используется при мощных

потоках) световых потоках, например,

солнечное излучение)

Р

ассмотрим фотодиодный режим:


p n

ННЗ Ө

ЕВН ННЗ

ЕВНЕШН


UОБР


а) Пусть имеется поток фотонов с энергией . Образовавшиеся за счет фотогенерации НЗ диффундируют к переходу. Суммарное поле перехода ( ) является ускоряющим для ННЗ, поэтому ННЗ перебрасываются полем в соседние области, образуя световой ток .

б) Пусть освещение перехода отсутствует. В этом случае фотогенерация также будет отсутствовать, поэтому через переход суммарным полем будут перебрасываться в небольшом количестве ННЗ, образованные за счет генерации, и через диод будет протекать темновой ток небольшой величины.

Рассмотрим ве́нтильный режим:

В этом режиме будут происходить те же самые процессы, что и в фотодиодном режиме, только переброс ННЗ через переход будет осуществляться исключительно за счет внутреннего поля .

Применение фотодиодов:

  • В вычислительной технике фотодиоды используют в устройствах ввода-вывода информации, т.к. фотодиоды обладают хорошей развязкой между входом и выходом (отсутствует электрическая связь между входом и выходом).

  • В кино-, фото-аппаратуре.

  • В оптронах в качестве фотоприёмников.

  • Вентили – в качестве солнечных батарей.


4.4 Светодиод
Светодиоды – это полупроводниковые диоды, преобразующие электрическую энергию в световую.

Обозначение: Пример: АЛ102Б, АЛ307А

Светодиоды работают при прямом включении.
Принцип работы:

Под действием прямого напряжения ОНЗ диффундируют в соседние области, где они рекомбинируют с зарядами противоположного знака. Рекомбинация сопровождается переходом электронов из ЗП в ВЗ. При этом выделяется энергия в виде квантов излучения .

W(эВ)

Ө

WП

hv

WВ

Для получения видимого излучения, необходимо, чтобы ширина запрещенной зоны находилась в пределах: .

Отсюда видно, что германий и кремний для изготовления светодиодов непригодны, т.к. они имеют ширину запрещенной зоны меньшую, чем необходимо для видимого излучения ( ).

Для изготовления светодиодов применяется фосфид галлия (GaP), карбид кремния (SiC), тройные соединения, называемые твердыми растворами и состоящими из галлия, алюминия и мышьяка (Ga, Al, As) или галлия, мышьяка, фосфора (Ga, As, P).

Внесение в полупроводник некоторых примесей позволяет получить свечение различного цвета.

Кроме светодиодов, дающих видимое свечение, используются светодиоды инфракрасного излучения на основе арсенида галлия (GaAs), у которого . Они применяются в фотореле, различных датчиках, пультах, входят в состав некоторых оптронов.

Конструктивно светодиоды выполняются:

  • В непрозрачных корпусах с линзой, обеспечивающей направленное излучение.

  • В прозрачном пластмассовом корпусе, создающем рассеянное излучение.

  • В бескорпусном варианте.

Применение:

Индикация, реле, датчики, пульты.

1   2   3   4   5


написать администратору сайта