Каналы связи. Конспект лекций новый. Введение
Скачать 0.54 Mb.
|
К полудуплексным относятся такие каналы, в которых обмен информацией осуществляется по разным сигнальным линиям, но поочередно. Такие каналы имеют несколько лучшую надежность за счет возможности “возвратного” обмена, при котором абонент, принявший информацию, возвращает ее передавшему абоненту. Передающий абонент в свою очередь сравнивает переданную информацию с принятой и, в случае необходимости, в соответствии со специальным протоколом, осуществляет повтор передачи. Дуплексные каналы применяются в тех случаях, когда необходимо вести одновременно двусторонний обмен информацией. Это самые быстрые каналы связи. Мультиплексные каналы применяются в тех случаях, когда необходимо сразу передавать информацию от одного источника нескольким потребителям одновременно или последовательно. Каналы связи Симплексные Полудуплексные Дуплексные Мультиплексные Цифровые Аналоговые Параллельные Последовательные Одно- Много- Одно- Много- Ампли- Частот- Фазо- адресн. адресн. адресн. адресн. тудные ные вые RS232, USB, USART Ethernet, I2C, CAN и др. «Стык» «Токовая петля» Рис. 6. Классификация каналов связи. В современных системах управления наибольшее распространение получили цифровые каналы, так как они, несмотря на некоторое снижение по сравнению с аналоговыми каналами скорости обмена, обладают большей надежностью и более высокой нагрузочной способностью. Кроме того, цифровые каналы используют унифицированные технические средства, что сводит к минимуму процесс адаптации канала к конкретной системе управления. В большинстве случаев адаптация заключается в разработке соответствующего программного обеспечения, т.е разработке соответствующих драйверов. Аналоговые каналы связи применяются в ограниченных случаях, когда требуется передать информацию с высокой скоростью и на небольшое расстояние (не более 2...3 метров). В системах управления ГПС аналоговые каналы используются для связи с различными аналоговыми датчиками), для управления аналоговыми приводами исполнительных органов оборудования и т.п. Основными же каналами связи в СУ ГПС являются все же цифровые. Как видно из классификационной диаграммы, цифровые каналы делятся на два класса - параллельные и последовательные. Принцип работы первых заключается в том, что передаваемый объем - дискрета - информации передается абоненту одновременно по нескольким параллельным линиям связи. Число этих линий зависит от объема дискреты и числа вспомогательных сигналов, необходимых для надежной передачи. В последовательных каналах производится “побитная” (последовательная) передача дискреты информации по одной сигнальной линии. Работу обоих каналов рассмотрим подробнее. 3.1. Параллельные цифровые каналы связи. Параллельные цифровые каналы бывают двух типов: одноадресные и многоадресные. Особенность работы первых заключается в том, что обмен информацией может производиться только между двумя, заранее конструктивно определенными устройствами, и переключение одного устройства на работу с другими абонентами требует остановки работы обоих устройств и аппаратного переключения канала связи. В многоадресных каналах обмен происходит также между двумя устройствами, но одно из устройств является ведущим и это устройство управляет работой всего канала, второе устройство является ведомым. Число ведомых устройств практически неограниченно (зависит только разрядности адресной шины). 3.1.1. Одноадресные параллельные каналы связи. Структурная схема одноадресного канала приведена на рис. 7. Работа канала осуществляется следующим образом. Вначале ведущее устройство по линии ГИ сообщает ведомому о готовности к обмену информацией. В ответ, ведомое устройство по линии ГП также информирует ведущее о готовности к обмену. После чего ведомое устройство устанавливает на линии ЗП сигнал запроса на прием информации, . После получения сигнала ЗП ведущее устройство устанавливает на линиях D0...Dn цифровой код и с некоторой задержкой формирует сигнал Стр. Ведомое устройство по получении сигнала Стр снимает сигнал ЗП, предотвращая таким образом передачу ведущим следующей дискреты, и считывает код с линий D0…Dn и вновь формирует сигнал ЗП. Далее цикл повторяется до окончания обмена. Назначение сигналов их активный уровень и направление приведены в таблице 1, а циклограмма сигналов на рис. 8. Основной технической характеристикой таких каналов является разрядность, определяемой как число единиц информации (бит), одновременно передаваемой по каналу. Соответственно разрядность определяет собой и число основных информационных линий связи. Помимо информационных линий связи в параллельных каналах используются и дополнительные, командные сигнальные линии. Число их зависит от сервисных возможностей канала. Типовым представителем одноадресного параллельного канала можно считать порт LPT, используемый в компьютерах для подключения печатающих устройств. Таблица 1.
Конец обмена D0...Di ГИ ГП Стр. ЗП Рис.8. Циклограмма сигналов в одноадресном параллельном канале связи. В таблице 2 приведены обозначения сигналов, их наименование, направление действия, а также нумерация контактов выходного разъема LPT-порта компьютера. Порт является однонаправленным, следовательно, для двухстороннего обмена необходимо два таких канала. Надо также упомянуть, что приведенные в таблице сигналы не являются аппаратной принадлежностью канала, и их назначение определяется только программной поддержкой - драйвером, поэтому назначение линий можно легко изменить, разработав новый драйвер, естественно, не меняя направления передачи сигналов. Примечание. В современных конструкциях принтеров применяются другие каналы связи, в частности, последовательные. Таблица 2.
* при Auto FDXT =0 в принтере происходит смене строки и возврат каретки по одному коду, при Auto FDXT = 1 в принтер должны посылаться коды смены строки и возврата каретки отдельно. 3.1.2. Многоадресный параллельный канал связи (шина). Принцип работы многоадресных каналов отличается от одноадресных тем, что в алгоритме их работы добавлена функция определения адреса того устройства, с которым устанавливается связь для последующего обмена информацией. Подключаемые к шине устройства делятся на два типа: ведущие устройства и ведомые, причем одновременно на шине может быть только одно ведущее устройство, которое осуществляет управление шиной. Передача управления шиной другому устройству производится после выполнения определенных операций. Несколько слов о терминологии. На практике и в технической литературе такие каналы называют “Общая шина” для сокращения просто «шина», иногда встречается название “Магистраль” Сигналы многоадресного канала (и, соответственно, сигнальные линии) объединены в три группы, называемые соответственно шиной адреса, шиной данных и шиной управления. По названиям шин легко догадаться об их назначении. Шина адреса объединяет все сигнальные линии, задающие код адреса вызываемого абонента, шина данных - соответственно линии данных, а шина управления - все командные сигнальные линии. Число сигнальных линий в шинах различно и определяются техническими и функциональными характеристиками тех устройств, которые используют данный канал, хотя имеются некоторые общие закономерности в выборе числа линий - разрядности каждой шины. Так разрядность адресной шины определяется из условия: n N = 2 где: n - разрядность шины, N - максимальное число абонентов, подключенных к адресной шине. Разрядность шины данных также может быть различной, однако и здесь наблюдается некоторая закономерность - для устройств и систем нижних иерархических уровней СУ ГПС обычно применяются 16- разрядные шины данных, редко 8 - разрядные. В устройствах СУ более высоких уровней наблюдается тенденция к использованию 32- и даже 64- разрядных шин. Разрядность шины управления изменяется в очень широких пределах: от нескольких единиц до нескольких десятков, однако и здесь наблюдается тенденция к унификации, поэтому при разработке новых устройств и систем рекомендуется использовать уже имеющиеся наборы сигналов на шине управления. Так, например, в таблице 3 приведен состав сигналов на основной шине типа ISA , используемой в современных персональных компьютерах и в новейших устройствах числового программного управления. К шине адреса относятся сигналы SA0...SA19, к шине данных – SD0...SD15, остальные сигналы, кроме сигналов питания, составляют шину управления. В последних вариантах устройств ЧПУ используется шина PSI, которая несколько отличается от шины ISA. На рис.9а и 9б приведены циклограммы сигналов при выполнении некоторых операций с использованием шины ISA. Как видно из таблицы 3 число сигнальных линий в многоадресных параллельных каналах значительно больше, чем в одноадресных, что создает определенные трудности при создании производственных систем управления. Анализ задач, решаемых при управлении оборудованием, показывает, что приведенный в таблице 3 состав сигналов является довольно избыточным, особенно для систем непосредственного управления оборудованием (УЧПУ). Поэтому разработчиками этих устройств были предприняты попытки уменьшения числа линий в канале. В таблице 4 приведен состав сигналов в многоадресном канале устройства ЧПУ типа МС2101.В технической документации на это устройство многоадресный канал называется “Магистралью”. Таблица 3.
|