Конспект лекций образовательной программы дополнительного профессионального образования
Скачать 1.51 Mb.
|
ТЕМА 3. ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА Особенностью действия электрического тока на человека является его невидимость. Эта особенность обуславливает тот фактор, что практически все рабочие и нерабочие места, где имеется электрооборудование (переносные электроприемники) под напряжением, считаются опасными. В каждом таком месте нельзя считать исключенной опасность поражения человека электрическим током. Воздействовать на человека может электрический ток, а также электрическая дуга (молния), статическое электричество, электромагнитное поле. Если через организм человека протекает электрический ток, то он может вызывать разнообразный характер воздействия на различные органы, в том числе центральную нервную систему. 38 Чем опасен электрический ток Прикосновение к неизолированным токоведущим частям; Попадание в зону короткого замыкания фазы на землю; Работа электроустановки под напряжением без надзора; Неудовлетворительное заземление электроустановок. Тело человека является проводником электрического тока. Однако проводимость живой ткани в отличие от проводимости обычных проводников обусловлена не только физическими свойствами, но и сложными биохимическими и биофизическими процессами, присущими живой материи. В результате чего, сопротивление тела человека является переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, физиологических процессов, протекающих в организме, параметров электрической цепи, состояния окружающей среды. Важнейшим условием поражения человека электрическим током является путь этого тока. Если на пути тока оказываются жизненно важные органы (сердце, легкие, головной мозг), то опасность смертельного поражения очень велика. Если же ток проходит иными путями, то воздействие его на жизненно важные органы может быть лишь рефлекторным. При этом опасность смертельного поражения хотя и сохраняется, но вероятность ее резко снижается. Ток протекает только в замкнутой цепи. Поэтому имеет место как входная точка (участок) тела человека, так и точка выхода электрического тока. Возможных путей тока в теле человека неисчислимое количество. Однако характерным можно считать следующие: рука – рука; рука – нога; нога – нога; Электрический удар Электрическая травма Потеря сознания Паралич дыхательных центров Разрыв тканей Электролиз – разложение крови Расстройство ЦНС Тепловой эффект - ожоги 39 голова – рука; голова – нога. Степень опасности различных петель тока можно оценить по относительному количеству случаев потери сознания во время воздействия тока, а также по значению тока, проходящего через область сердца. Наиболее опасными являются петли «голова – рука» и «голова – нога», когда ток может проходить не только через сердце, но и через головной и спинной мозг. Проходя через организм человека, электрический ток может производить термическое, электролитическое, механическое, биологическое действия: Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве до высоких температур кровеносных сосудов, крови, нервной ткани, сердца, мозга и других органов, находящихся на пути тока, что вызывает в них серьезные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, что сопровождается значительными нарушениями их физико-химического состава. Механическое (динамическое) воздействие тока проявляется в возникновении давления в кровеносных сосудах и тканях организма при нагреве крови и другой жидкости, а также смещении и механическом напряжении тканей в результате непроизвольного сокращения мышц и воздействия электродинамических сил. Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов, протекающих в нормально действующем организме. Электрически ток, проходя через организм, раздражает живые ткани, вызывая в них ответную реакцию – возбуждение, являющееся одним из основных физиологических процессов, когда живые образования переходят из состояния относительного физиологического покоя в состояние нестабильности. Если ток проходит непосредственно через мышечную ткань, то возбуждение проявляется в виде непроизвольного сокращения мышц. Такое воздействие называется прямым. Однако действие тока может быть не только прямым, но и рефлекторным, т.е. через центральную нервную систему. Иначе, ток может вызвать возбуждение и тех тканей, которые не находятся на его пути. В этом случае, при прохождении через организм человека тока, центральная нервная система может подать нецелеобразную исполнительную команду, что приводит к серьезным нарушениям деятельности жизненно важных органов, в том числе сердца и легких. В живой ткани (в мышцах, сердце, легких), а также центральной и периферической нервной системе постоянно возникают электрические 40 потенциалы (биопотенциалы). Внешний ток, взаимодействую с биотоками, может нарушить нормальный характер из воздействия на ткани и органы человека, подавить биотоки и тем самым вызвать серьезные расстройства в организме вплоть до его гибели. Аналогичное воздействие оказывает на организм электромагнитное поле. Многообразие действия электрического тока на организм приводит к различным электротравмам. Условно все электротравмы можно разделить на местные и общие. К местным электротравмам относятся местные повреждения организма или ярко выраженные местные нарушения целостности тканей тела, в том числе костных тканей, вызванные воздействием электрического тока или электрической дуги. К наиболее характерным местным травмам относятся электрические ожоги, электрические знаки, металлизация кожи, механические повреждения и электроофтальмия. Электрический ожог (покровный) возникает, как правило, в электроустановках до 1000 В. При более высоком напряжении возникает электрическая дуга или искра, что вызывает дуговой электрический ожог. Токовый ожог участка тела является следствием преобразования энергии электрического тока, проходящего через этот участок, в тепловую. Этот ожог определяется величиной тока, временем его прохождения и сопротивлением участка тела, подвергшегося воздействию тока. Максимальное количество теплоты выделяется в местах контакта проводника с кожей. Поэтому в основном токовый ожог является ожогом кожи. Однако токовым ожогом могут быть повреждены и подкожные ткани. При токах высокой частоты наиболее подвержены токовым ожогам внутренние органы. Электрическая дуга вызывает обширные ожоги тела человека. При этом поражение носит тяжелый характер и нередко оканчивается смертью пострадавшего. Шаговое напряжение Шаговое напряжение обуславливается растекания электрического тока по поверхности земли в случае однофазного замыкания на землю провода ВЛ и т.д. Если человек будет стоять на поверхности земли в зоне растекания электрического тока, то на длине шага возникнет напряжение, и через его тело будет проходить электрический ток. Величина этого напряжения, называемого шаговым, зависит от ширины шага и места расположения человека. Чем ближе человек стоит к месту замыкания, тем больше величина шагового напряжения. Величина опасной зоны шаговых напряжений зависит от величины напряжения электролинии. Чем выше напряжение ВЛ, тем больше опасная зона. Считается, что на расстоянии 8 м от места замыкания электрического провода напряжением выше 1000 В опасная зона шагового напряжения отсутствует. При напряжении электрического провода ниже 1000 В величина 41 зоны шагового напряжения составляет 5 м. Чтобы избежать поражения электрическим током, человек должен выходить из зоны шагового напряжения короткими шажками, не отрывая од- ной ноги от другой. При наличии защитных средств из диэлектрической резины (боты, галоши) можно воспользоваться ими для выхода из зоны шагового напряжения. Не допускается выпрыгивать из зоны шагового напряжения на одной ноге. В случае падения человека (на руки) значительно увеличивается величина шагового напряжения, следовательно, и величина тока, который будет проходить через его тело и жизненно важные органы – сердце, легкие, головной мозг. Если в результате соприкосновения с токоведущими частями или при возникновении электрического разряда механизм или грузоподъемная машина окажутся под напряжением, прикасаться к ним и спускаться с них на землю или подниматься на них до снятия напряжения не разрешается Вопросы для самоконтроля: 1. Особенности действия тока на человека. 2. Электрическое сопротивление тела человека, факторы, влияющие на сопротивление тела человека. 3. Влияние пути прохождения тока по телу человека на опасность поражения электрическим током. 4. Предельно допустимые значения тока и напряжения. 5. Виды электротравм, местные электротравмы и электрические удары. 6. Напряжение прикосновения, напряжения шага. ТЕМА 4. ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ. Работа в действующих электроустановках так же, как и пользование электрическими приборами, совершенно безопасна, если все работающие точно соблюдают правила технической эксплуатации и техники безопасности. Эта же работа может оказаться смертельно опасной и повлечь несчастные случаи при несоблюдении правил. Безопасность электрических установок достигается применением следующих способов защиты. 1. Заземление, т. е. преднамеренное в целях электробезопасности электрическое соединение с заземляющим устройством металлических частей, нормально не находящихся под напряжением, применяется в сетях с изолированной нейтралью. Чем меньше сопротивление защитного заземления, тем меньше напряжение на этих частях при пробое изоляции. 2. Зануление, т. е. преднамеренное в целях отключения напряжения при нарушении изоляции электрическое соединение металлических частей электроустановки, нормально не находящихся под напряжением, с 42 заземленной нейтралью («нулем»), применяется в сетях 380/220 и 220/127 В с глухозаземленной нейтралью. Исправное зануление обеспечивает защиту во многих, но не во всех ситуациях. Ведь нельзя исключить возможность обрыва нулевого провода и нарушения цепи зануления. Но даже и при неповрежденном занулении опасность может возникнуть, например, при падении на землю фазного провода воздушной линии либо при переходе (пробое) напряжения со стороны 6 – 10 кВ на сторону 0,38/0,22 кВ и в других случаях. 3. Выравнивание потенциалов, выполняемое в случаях, когда электробезопасность от напряжений прикосновений и шага не может быть достигнута заземлением и занулением. 4. Защитное отключение, обеспечивающее автоматическое отключение всех фаз аварийного участка сети до 1 кВ не позже 0,2 с с момента возникновения однофазного замыкания или ухудшения изоляции, например с момента прикосновения руки человека к токоведущей части электроустановки. Защитное отключение рекомендуется для случаев, когда электробезопасность не обеспечивается заземлением, занулением и выравниванием потенциалов. Устройства защитного отключения с временем срабатывания не более 0,05 с для сетей с заземленной нейтралью выпускаются промышленностью и оправдывают себя как при работе с ручным электроинструментом, так и при применении в производственных помещениях. 5. Изоляция частей, находящихся под напряжением в местах, где их может коснуться человек или животное, является наиболее распространенной мерой электробезопасности, однако за изоляцией нужно постоянно следить и поддерживать ее в исправном состоянии. Изоляционные материалы (пластмасса, резина, фарфор, бумага и др.) могут терять свои свойства при старении или нагревании либо повреждаться механическими воздействиями, против которых изоляторы малоустойчивы. Если изоляцией служит воздушный промежуток, то он может уменьшиться при ослаблении креплений или при деформации защитных кожухов и других деталей электроаппаратуры. Самая простая изоляция – окраска – во многих случаях предотвращает электротравматизм, поэтому трубопроводы и металлические конструкции, которые практически невозможно изолировать от «земли», а также и те, которые заземлены (например, водопроводные и газовые трубы, отопительные радиаторы и др.), должны быть всегда хорошо окрашены масляной или эмалевой электроизолирующей краской. Изоляцию электроаппаратуры проверяют измерением активного сопротивления, однако нет гарантии, что повреждение изоляции не появится в промежутке между измерениями. Поэтому желателен непрерывный контроль изоляции. Этому требованию отвечает устройство защитного отключения, реагирующее на снижение сопротивления изоляции. 43 6. Двойная изоляция, представляющая собой совокупность рабочей и дополнительной изоляции, применяется главным образом в переносных электроинструментах. 7. Разделяющие трансформаторы, изолирующие электроприемники, подключаемые к вторичной сети, от возможных аварийных состояний первичной сети: повреждений изоляции, замыканий на землю, утечек и других причин, вызывающих повышенную опасность. Эти трансформаторы могут быть чисто разделяющие (например, 220/220 В) или одновременно понижающие напряжение (380/220 В). Для исключения повреждений изоляции внутри трансформаторов их изготовляют особо тщательно, применяют повышенные испытательные напряжения, обмотки первичного и вторичного напряжения располагают на разных уровнях. Каждый токоприемник комплектуют своим трансформатором. В условиях применения тяжелых электромолотков, вибраторов и других механизмов, которые при частоте 50 Гц не всегда могут быть выполнены на пониженное напряжение, применение разделяющих трансформаторов в современных условиях наилучшим образом обеспечивает безопасность, но и здесь нужен контроль изоляции. 8. Вращающиеся преобразователи частоты менее надежны и долговечны по сравнению с разделяющими трансформаторами и дороже их, но зато позволяют применять легкие электроинструменты, работающие на пониженном напряжении и повышенной частоте, например при 36 В и 200 Гц, полностью изолированные от первичной сети. 9. Размещение на недоступной высоте неизолированных частей, находящихся под напряжением, или защита их запираемыми кожухами и ограждениями с тем, чтобы сделать невозможным случайное соприкосновение с частями электроустановки, находящимися под напряжением. 10. Понижение напряжения сети до 12 – 36 В. При таких напряжениях пользуются переносными лампами, переносным электроинструментом. В особо опасных помещениях местное освещение также может иметь пониженное напряжение, получаемое от аккумуляторов или понижающих трансформаторов. 11. Устройства для понижения напряжения до 12 В во вторичной цепи сварочных трансформаторов, срабатывающие автоматически с выдержкой времени не более 0,5 с после обрыва дуги. Имеются образцы таких устройств, ограничивающих напряжение холостого хода до 8 В при времени срабатывания до 0,15 с или автоматически отключающих трансформатор при холостом ходе. 12. Применение средств индивидуальной защиты – диэлектрических перчаток, бот и галош; ковров и дорожек; экранов от электрического поля и экранирующей спецодежды; изолирующих подставок; инструментов с изолирующими рукоятками, а также предупреждающих плакатов и надписей. 44 13. Оснащение механизмов приборами безопасности, сигнализирующими об опасности и предотвращающими опасные сближения с проводами, находящимися под напряжением. Например, в одном из приборов при приближении стрелы крана к проводам загорается красная лампа, срабатывает звуковая сигнализация и затем автоматически останавливается машина за счет перекрытия каналов питания дизельного двигателя или разрыва цепи зажигания в двигателе внутреннего сгорания. Аналогичные сигнализаторы монтируются и на касках рабочих. 14. Применение блокировок, т. е. специальных устройств, предотвращающих ошибочные действия. Например, на дверях ячеек подстанций, на дверцах шкафов с электроаппаратурой, на крышках ящиков с рубильнинами и в другой аппаратуре используется блокировка, которая не позволяет открыть дверь или снять крышку до снятия напряжения. Условия работы и типы электроустановок разнообразны, поэтому в каждом конкретном случае нужно действовать по тщательно продуманной схеме организации монтажных, ремонтных или эксплуатационных работ и применять только те средства или их сочетания, которые могут гарантировать электробезопасность. Кроме перечисленных способов защиты, есть и другие, направленные на общее улучшение работы электроустановок и одновременно улучшающие условия электробезопасности. Например, компенсация емкостной составляющей тока утечки на землю может существенно снизить ток замыкания на землю, а следовательно, и опасность поражения током. Равномерная нагрузка фаз трехфазной сети предотвращает несимметрию напряжений, возникающую при неравномерной нагрузке и вызывающую ряд нежелательных явлений. Сюда относятся: добавочные потери как в линиях и подстанциях, так и в электродвигателях; вибрация электродвигателей, приносящая ущерб изоляции обмоток и сокращающая срок службы; протекание тока и появление напряжения в нулевом проводе; возникновение напряжения на металлических трубопроводах и оболочках кабелей, на фундаментах и конструкциях самых различных сооружений. Помимо опасности электротравматизма, это создает повышенную коррозию металла, в частности стальной арматуры железобетонных конструкций, что может снизить надежность и долговечность стальных и железобетонных конструкций. Напряжение на нулевом проводе можно несколько снизить увеличением сечения нулевого провода, но это вызывает дополнительный расход металла. Снижение сопротивления нулевого провода может быть достигнуто также и другими средствами, например автоматическим подключением «фонарного» провода (включающего светильники наружного освещения) в светлое время суток параллельно нулевому проводу. Общее снижение сопротивления системы зануления обеспечивается и повторными заземлениями нулевого провода; они работают и в случае обрыва нулевого провода. 45 Важной мерой является профилактика электротравматизма среди производственного персонала и населения. Эта работа ведется в четырех основных направлениях. Обучение и повышение квалификации персонала. Практика показала, что с увеличением стажа работы персонала частота электротравматизма резко снижается, что еще раз показывает значение высокой квалификации и опыта персонала, допускаемого к выполнению работ в действующих электроустановках, важность закрепления установок за постоянными рабочими. Здесь необходимо напомнить, что электрифицированными инструментами и приборами пользуются работники разных профессий, и электромонтеры должны следить и за их электробезопасностью. Предупреждение электротравматизма путем выявления при обследованиях в порядке надзора нарушений правил и норм технического состояния электроустановок и их эксплуатации. Выявление для изъятия из эксплуатации или прекращения изготовления электрооборудования и изделий, не отвечающих требованиям электробезопасности. Расследование случаев поражения электрическим током с разработкой мероприятий по устранению причин и условий возникновения подобных случаев, а также проведение систематической разъяснительной работы по вопросам электробезопасности с производственным персоналом и с населением, осуществляемой органами электронадзора. Известно, что степень и исход поражения человека или животного электрическим током зависит от тока и времени его воздействия на организм. Опасный ток есть следствие повышенного напряжения прикосновения, либо следствие пониженного сопротивления цепи. Таким образом, электробезопасность можно обеспечить различными способами: снижением тока за счет понижения напряжения прикосновения путем устройства заземления; снижением опасности путем быстрого автоматического отключения аварийного участка защитой при устройстве зануления; повышением сопротивления цепи тока через человека за счет изоляции и т. д. Способ повышения сопротивления цепи применяется в ряде случаев, например путем использования средств индивидуальной защиты или двойной изоляции. Однако не всегда этот способ достаточно надежен, так как сопротивление цепи изменяется в широких пределах. Сопротивление полов в зависимости от их конструкции и влажности или сопротивление обуви в зависимости от ее влажности изменяется в тысячи раз. То же относится к сопротивлению поверхности земли. Если учесть, что сопротивление тела человека также может широко изменяться в зависимости от многих причин (оно уменьшается во много раз при влажности, жаре, при падении атмосферного давления, в плохую погоду, при незаметных с виду повреждениях кожи и др.), то следует признать, что сопротивление цепи тока через человека является величиной, в большой мере случайной. 46 Другое дело – понижение напряжения прикосновения, которое легко рассчитать и обеспечить выполнением такого сравнительно простого мероприятия, как заземление. Для полной электробезопасности в условиях наиболее тяжелых аварийных режимов, таких как обрыв пулевого провода с одновременным замыканием фазы на землю и др., применяют дополнительные меры, например выравнивание потенциалов путем устройства заземленной металлической выравнивающей сетки в земле или в полу. В практических условиях эксплуатации промышленных и сельских электроустановок в настоящее время понижение напряжения прикосновения является наиболее доступным средством электробезопасности. Вопросы для самоконтроля: 1. Общие требования. Защиты при косвенном прикосновении. 2. Заземляющие средства заземления. 3. Автоматические отключения питания. 4. Уравнивание потенциалов, двойная или усиленная изоляция. 5. Защитное электрическое заземление цепей, изолирующие (не проводящие) помещения, зоны, площади. 6. Защита от прямого прикосновения. |