Курс лекций для студентов специальности 13. 02. 11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)
Скачать 0.78 Mb.
|
Рис. 1.4. Диаграмма, иллюстрирующая работу компенсирующего устройства На границе раздела потребителя и энергоснабжающей организации в зависимости от места присоединения потребителя в энергетической системе средневзвешенное значение коэффициента мощности должно было находиться в пределах 0,85 ... 0,95. Позже, для оценки потребления реактивной мощности был введен коэффициент реактивной мощности: (1.41) где Qэ - оптимальная реактивная нагрузка предприятия в часы максимума активной нагрузки в энергосистеме; Рз - заявленная предприятием активная мощность, участвующая в максимуме энергосистеме. В дальнейшем с 1982г, с целью более эффективного управления режимами реактивной мощности, энергосистемой для предприятий устанавливаются экономически оптимальные значения реактивной мощности, которая может быть передана предприятию в режимах наибольшей и наименьшей активной нагрузки энергосистемы, соответственно Qэ1 и Qэ2. Для промышленных предприятий с присоединенной мощностью менее 750 кВА мощность компенсирующих устройств задается энергосистемой и является обязательной при выполнении проекта электроснабжения предприятия. Для жилых и общественных зданий компенсация реактивной нагрузки не предусматривается. Существуют два пути снижения реактивных нагрузок: а) снижение реактивной мощности без применения средств компенсации, не требующее больших материальных затрат, которое должно проводиться в первую очередь; б) установка специальных компенсирующих устройств. К естественной компенсации относится следующее: а) создание рациональной схемы электроснабжения за счет уменьшения количества ступеней трансформации; б) выравнивание графика нагрузки и улучшение энергетического режима работы оборудования; в) замена, перестановка или отключение трансформаторов, загруженных в среднем менее 30 % от их номинальной мощности; г) правильный выбор электродвигателей по мощности и типу; д) замена малозагруженных двигателей (менее 45 %) двигателями меньшей мощности; е) переключение статорных обмоток асинхронных двигателей напряжением до 1 кВ с треугольника на звезду, если их нагрузка составляет менее 40 %; ж) улучшение качества ремонта электродвигателей; з) ограничение продолжительности холостых ходов двигателей и сварочных трансформаторов; и) замена асинхронных двигателей синхронными, где это возможно по технико-экономическим соображениям. К специальным компенсирующим устройствам относятся: а) синхронные компенсаторы (СК); б) конденсаторные батареи (КБ); в) статические источники реактивной мощности (ИРМ). Наибольшее применение в сетях потребителей нашли КБ. В сетях с резкопеременной, ударной нагрузкой на напряжении 6-10 кВ рекомендуется применение статических ИРМ. Для компенсации больших реактивных нагрузок, чаще в энергосистемах, применяются СК. В основе расчета мощности компенсирующих устройств при проектировании систем электроснабжения лежит критерий минимума приведенных затрат на конденсаторные батареи до и выше 1 кВ, трансформаторные подстанции (ТП) и потери электроэнергии в питающих ТП электрических сетях [4]. В действующих системах электроснабжения мощность компенсирующих устройств можно определить по следующему выражению: Qк = Рр(tg1 - tg2), (1.42) где Рр – расчетная активная нагрузка потребителя; tg1, tg2 – коэффициенты реактивной мощности соответственно фактический и нормативный. Пример. Активная и реактивная мощность потребителя составляет Р = 18 кВт, Q=26 квар. Рассчитать мощность и выбрать компенсирующее устройство, приняв нормативное значение реактивной мощности tg2 =0,33 (cos = 0,95). Решение. Полная мощность потребителя Фактический коэффициент мощности Мощность компенсирующего устройства Qк = Рр(tg1 - tg2); Qк = 18(1,43 – 0,33) = 19,8 квар. Приняв мощность конденсаторных батарей стандартной величиной 18 квар (ближайшая величина, на которую выпускаются конденсаторные батареи), потребляемая реактивная мощность после компенсации составит Тогда полная мощность Коэффициент мощности после компенсации реактивной нагрузки |