Главная страница

лаборотория. ЛАБОРАТОРНАЯ РАБОТ1. Лабораторная работа исследование резонанса напряжений


Скачать 114.64 Kb.
НазваниеЛабораторная работа исследование резонанса напряжений
Анкорлаборотория
Дата17.10.2020
Размер114.64 Kb.
Формат файлаdocx
Имя файлаЛАБОРАТОРНАЯ РАБОТ1.docx
ТипЛабораторная работа
#143579

ЛАБОРАТОРНАЯ РАБОТА № 3.

ИССЛЕДОВАНИЕ РЕЗОНАНСА НАПРЯЖЕНИЙ

Цель работы. Изучение и экспериментальное исследование резонанса

в цепи с последовательным соединением катушки индуктивности и конденсатора.

Краткие теоретические сведения.

Резонансом называют такой режим работы пассивной цепи, при котором входной ток совпадает по фазе с входным напряжением, несмотря на наличие в цепи реактивных элементов.

Если цепь представляет собой последовательное соединение двухполюсников, содержащих реактивные элементы разного характера, то возникновение резонанса объясняется взаимной компенсацией реактивных составляющих напряжений на этих двухполюсниках. В этом случае говорят о резонансе напряжений.

4. ПРАКТИЧЕСКИЙ РАСЧЁТ



Рис.4. Схема

Таблица 2.

Зависимость тока и напряжений на индуктивности и ёмкости от частоты при r1=0

f0, Гц

50

70

90

110

120

130

140

I(f), мА

6

9

15

27

36

57

85

UC(f), B

3,5

3,9

4,5

6,5

9,3

14,3

20,1

UL(f), B

0,5

0,9

1,6

3,9

6,3

11,2

19,7

f0, Гц

150

170

190

210

230

270

300

I(f),мА

77

40

25

19

15

10

8

UC(f),B

16,7

8,2

4,2

3,1

2,1

1,2

0,7

UL(f),B

14,3

12,1

7,1

6,1

4,9

4,1

3,9

Таблица 3.

Зависимости тока и напряжений на индуктивности и ёмкости от частоты при r1<>0

f0, Гц

50

70

90

110

120

130

140

I(f), мА

5

8

14

23

31

41

49

UC(f), B

3,4

3,8

4,8

7,1

8,1

10,1

11,1

UL(f), B

0,4

0,8

1,9

4,9

5,7

8,3

10,1

f0, Гц

150

170

190

210

230

270

300

I(f),мА

46

30

20

16

13

9

7,9

UC(f),B

9,7

5,6

3,5

2,4

1,8

1,1

0,6

UL(f),B

9,9

7,9

6,2

5,2

4,7

4,0

3,8

Частотные характеристики Xc(f), XL(f), ZK(f).

Реактивные сопротивления ёмкости и индуктивности и полное сопротивление цепи определяются по формулам:





Рис. 5. Зависимость реактивных сопротивлений элементов и полного сопротивления цепи от частоты.

Таблица 4.

Зависимость реактивных сопротивлений элементов и полного сопротивления цепи от частоты при r1=0.

f, Гц

50

70

90

110

120

130

140

XC(f), кОм

0,64

0,46

0,35

0,29

0,27

0,25

0,23

XL(f), кОм

0,07

0,11

0,14

0,17

0,19

0,20

0,22

Z(f), кОм

0,56

0,33

0,22

0,12

0,09

0,05

0,04

f, Гц

150

170

190

210

230

270

300

XC(f), кОм

0,21

0,19

0,17

0,15

0,14

0,12

0,11

XL(f), кОм

0,24

0,27

0,29

0,33

0,36

0,42

0,47

Z(f), кОм

0,04

0,09

0,14

0,18

0,23

0,30

0,37

Характеристическое сопротивление r.

Характеристическое сопротивление контура определяется по точке пересечения частотных характеристик на частоте 142 Гц. В точке пересечения реактивные сопротивления катушки индуктивности и ёмкости равны между собой и составляют примерно 210-220 Ом. Теоретическое расчётное значение характеристического сопротивления и экспериментальное значение совпадают с достаточной точностью.

Резонансные характеристики контура I(f), UK(f), UC(f):



Рис.6. Зависимость тока от частоты сигнала



Рис.7. Зависимость напряжения на реактивных элементах от частоты сигнала

Определение добротности Q:

а) При r1=0

По напряжениям на катушке индуктивности и ёмкости в момент резонанса. f0=142 Гц

 ; 

По ширине полосы пропускания резонансной кривой тока на уровне

I=0,7×I0=0,7×87= 60 мА.



б) При r1=50 Ом

По напряжениям на катушке индуктивности и ёмкости в момент резонанса

f0=142 Гц.

 ; 

По ширине полосы пропускания резонансной кривой тока на уровне

I=0,7×I0=0.7*53= 36 мА.



По отношению характеристического и активного сопротивлений контура.



Векторная диаграмма тока и напряжений для частоты f


f=130 Гц, mU=2 В/см.

Векторная диаграмма тока и напряжений для частоты f=f0



f=142 Гц, mU=2 В/см, Ur1=U

Векторная диаграмма тока и напряжений для частоты f>f0



f=150 Гц, mU=2 В/см

Таблица 5.

Зависимости тока и напряжений на катушке и конденсаторе от ёмкости (f=100 Гц).

C, мкФ

0

1

2

3

4

5

6

7

8

9

10

I(C), мА

0

1

5

7,5

10

12,5

13,8

19

40

48

67

UC(f), B

3

3,4

3,5

3,7

3,8

4,1

4,6

6,5

7,5

8,3

9,5

UL(f), B

0,1

0,3

0,6

1

1,2

1,6

2,1

3,8

5,1

6,2

8,1

C, мкФ

11

12

13

14

15

16

17

18

19

20




I(C), мА

72

74

78

77

73

67

63

57

49

43




UC(f), B

9,8

10

10,3

9

8

6,9

6,1

5,1

4,2

4,1




UL(f), B

8,4

9,5

10

10

9,5

8,8

8,3

7,5

7,2

7,1






Рис. 8 Частотные характеристики тока и напряжений последовательного контура на частоте 100 Гц при изменении ёмкости

ВЫВОД

Последовательный контур представляет собой электрическую цепь, состоящую из последовательно соединённых активного сопротивления, ёмкости и индуктивности. Резонанс напряжений в последовательной цепи возникает на частоте, при которой реактивные сопротивления ёмкости и индуктивности равны. На резонансной частоте сопротивление последовательного контура минимально и равно активному сопротивлению цепи. Падения напряжений на ёмкости и индуктивности и ток в цепи достигают максимальных значений.

На частотах, ниже резонансной, сопротивление последовательного контура имеет ёмкостной характер. На частотах, выше резонансной, ¾ индуктивный характер.

Добротность последовательного контура зависит от величины активного сопротивления и возрастает с уменьшением сопротивления.

Резонанс напряжений в последовательном контуре достигается изменением реактивных параметров схемы или частоты сигнала. Изменение ёмкости ¾ наиболее применяемый способ достижения резонанса.


написать администратору сайта