Лабораторная работа №1 Решение логических задач. Лабораторная работа 1 Решение логических задач Цель работы
Скачать 454.13 Kb.
|
Индивидуальное заданиеРешите задачу, согласно вашему индивидуальному варианту. Вариант 1Найти наилучшие стратегии по критериям: Вальда, Сэвиджа, Гурвица (коэффициент пессимизма равен 0,2), Гурвица применительно к матрице рисков (коэффициент пессимизма равен 0,4) для следующей платежной матрицы игры с природой (элементы матрицы - выигрыши): Вариант 2Дана матрица игры с природой в условиях полной неопределенности (элементы матрицы - выигрыши): Требуется: проанализировать оптимальные стратегии игрока, используя критерии пессимизма-оптимизма Гурвица применительно к платежной матрице А и матрице рисков R при коэффициенте пессимизма р = 0; 0,5; 1. При этом выделить критерии максимакса, Вальда и Сэвиджа. Вариант 3Дана следующая матрица выигрышей: Определите оптимальную стратегию используя критерии Вальда, Сэвиджа и Гурвица (коэффициент пессимизма равен 0,4). Вариант 4Один из пяти станков должен быть выбран для изготовления партии изделий, размер которой Q может принимать три значения: 150, 200, 350. Производственные затраты Сi для I станка задаются следующей формулой: Ci = Pi + ci*Q Данные Pi и ci приведены в табл4.2. Таблица 4.2
Решите задачу для каждого из следующих критериев Вальда, Сэвиджа, Гурвица (критерий пессимизма равен 0,6). Полученные решения сравните. Вариант 5При выборе стратегии Aj по каждому возможному состоянию природы Si соответствует один результат Vij. Элементы Vij являющиеся мерой потерь при принятии решения, приведены в табл. 4.3. Таблица 4.3
Выберите оптимальное решение в соответствии с критериями Вальда, Сэвиджа, Гурвица (при коэффициенте пессимизма равном 0,5). Вариант 6Намечается крупномасштабное производство легковых автомобилей. Имеются четыре варианта проекта автомобиля Rj. Определена экономическая эффективность Vji каждого проекта в зависимости от рентабельности производства. По истечении трех сроков Si рассматриваются как некоторые состояния среды (природы). Значения экономической эффективности для различных проектов и состояний природы приведены в табл. 4.4. Таблица 4.4
Требуется выбрать лучший проект легкового автомобиля для производства, используя критерий Вальда, Сэвиджа, Гурвица при коэффициенте пессимизма 0,1. Сравнить решения и сделать выводы. |