Главная страница

Лекции Булатицкий Дмитрий Иванович (во многом по материалам Прасолова А. Н.)


Скачать 319.62 Kb.
НазваниеЛекции Булатицкий Дмитрий Иванович (во многом по материалам Прасолова А. Н.)
Дата11.01.2022
Размер319.62 Kb.
Формат файлаdocx
Имя файлаLecture_Programming_2021_09_01.docx
ТипЛекции
#328427
страница34 из 36
1   ...   28   29   30   31   32   33   34   35   36

Динамические двумерные массивы


При работе с динамическими двумерными массивами возникают определенные трудности, связанные с тем, что в языке Си нет встроенных средств для учета длины строки при индексации. Поэтому программист сам должен обеспечить возможность индексации двумерного массива. Кроме того, должна быть предусмотрена возможность корректной передачи динамического массива в функцию. В следующих разделах на примере программы заполнения прямоугольный матрицы случайными значениями рассмотрим различные подходы к решению этой проблемы.
    1. Пересчёт индексов


В следующем примере двумерный массив представляется в виде одномерного, а местоположения каждого элемента двумерного массива в одномерном определяется суммой номера столбца и произведения номера строки на длину строки. Способ индексации одинаков как в вызывающей функции, так и в вызываемых.
#include

#include

#include
#define MAXVAL 1000
void *Malloc ( size_t size );

void RandomMatr ( double *Matr, int n, int l );

void OutMatr ( char *name,

double *Matr, int n, int m );
void main( void )

{

size_t n = 5, m = 6;

double *A;

/* Выделение памяти под матрицу */

A = (double *) Malloc( n*m*sizeof(double) );

/* Заполнение матрицы значениями и распечатка */

RandomMatr(A, n, m);

OutMatr("A", A, n, m);

/* освобождение памяти */

free(A);

}
void RandomMatr (double *Matr, int n, int m)

{

int i, j;

for(i = 0; i < n; i++)

for(j = 0; j < m; j++)

Matr[i*m+j] = random(MAXVAL) + 1;

}
void OutMatr( char *name, double *Matr, int n, int m )

{

int i, j;

printf("\nМатрица %s\n---------------\n", name);

for(i = 0; i < n; i++)

{

for(j = 0; j < m; j++)

printf("%8.1lf ", Matr[i*m+j]);

printf("\n");

}

}
void * Malloc( size_t size )

{

void *p = malloc(size);

if( !p )

{ printf("Недостаточно памяти!\n"); exit(1); }

return p;

}
Функция rand() с прототипом из возвращает псевдослучайное число в диапазоне от 0 до MAXVAL-1.
    1. Массивы с постоянной длиной строки


Если у массива длина строки постоянная, то адресацию динамического двумерного массива может выполнить компилятор:
#include

#include

#include
#define MAXVAL 1000

#define STRLEN 6
void *Malloc ( size_t size );

void RandomMatr ( double (*Matr)[STRLEN], int n );

void OutMatr ( char *name,

double (*Matr)[STRLEN], int n );
void main( void )

{

size_t n = 5;

double (*A)[STRLEN];

/* Выделение памяти под матрицу */

A = (double (*)[STRLEN])

Malloc( n*sizeof(double[STRLEN]) );

/* Заполнение матрицы значениями и распечатка */

RandomMatr(A, n);

OutMatr("A", A, n);

/* освобождение памяти */

free(A);

}
void RandomMatr (double (*Matr)[STRLEN], int n)

{

int i, j;

for(i = 0; i < n; i++)

for(j = 0; j < STRLEN; j++)

Matr[i][j] = random(MAXVAL) + 1;

}
void OutMatr( char *name, double (*Matr)[STRLEN], int n )

{

int i, j;

printf("\nМатрица %s\n---------------\n", name);

for(i = 0; i < n; i++)

{

for(j = 0; j < STRLEN; j++)

printf("%8.1lf ", Matr[i][j]);

printf("\n");

}

}
void * Malloc( size_t size )

{

void *p = malloc(size);

if( !p )

{ printf("Недостаточно памяти!\n"); exit(1); }

return p;

}
В этом примере все обращения к элементам двумерного массива аналогичны случаю массива с постоянными границами. Следует обратить внимание на то, что динамическая память выделяется для одномерного массива из элементов типа double[STRLEN], то есть строк двумерного массива, которые должны иметь фиксированную длину.


    1. Рваный массив


Следующий вариант представления динамического двумерного массива позволяет использовать привычную индексацию двумерного массива и передавать массив в функцию, но требует специальной функции-конструктора для инициализации этого массива и функции-деструктора для освобождения памяти от массива. Массив представляется в виде одномерного вектора указателей на строки двумерного массива. Каждой строке выделяется соответствующий блок памяти в конструкторе:
#include

#include

#include
#define MAXVAL 1000
void *Malloc ( size_t size );

double **MakeMatr ( size_t n, size_t m );

void DelMatr ( double *Matr[] );

void RandomMatr ( double *Matr[], int n, int m );

void OutMatr ( char *name,

double *Matr[], int n, int m );
void main( void )

{

int n = 5, m = 6;

double **A;

/* Выделение памяти под матрицу */

A = MakeMatr(n, m);

/* Заполнение матрицы значениями и распечатка */

RandomMatr(A, n, m);

OutMatr("A", A, n, m);

/* освобождение памяти */

DelMatr(A);

}
void RandomMatr (double *Matr[], int n, int m)

{

int i, j;

for(i = 0; i < n; i++)

for(j = 0; j < m; j++)

Matr[i][j] = random(MAXVAL) + 1;

}
void OutMatr( char *name, double *Matr[], int n, int m )

{

int i, j;

printf("\nМатрица %s\n---------------\n", name);

for(i = 0; i < n; i++)

{

for(j = 0; j < m; j++)

printf("%8.1lf ", Matr[i][j]);

printf("\n");

}

}
void *Malloc( size_t size )

{

void *p = malloc(size);

if( !p )

{ printf("Недостаточно памяти!\n"); exit(1); }

return p;

}
/* Конструктор матрицы */

double **MakeMatr( size_t n, size_t m )

{

double **Matr; size_t i;

Matr = (double**) Malloc( (n + 1) * sizeof(double *) );

for(i = 0; i < n; i++)

Matr[i] = (double *) Malloc( m * sizeof(double) );

Matr[n] = NULL;

return Matr;

}
/* Деструктор матрицы */

void DelMatr( double *Matr[] )

{

size_t i;

for(i = 0; Matr[i]; i++) free(Matr[i]);

free(Matr);

}
Вначале в функции-конструкторе MakeMatr() выделяется вектор памяти размером n+1 элементов для хранения указателей на double. Затем для каждой из n строк массива выделяется память и адрес ее записывается в ранее выделенный вектор указателей. В последний элемент вектора заносится величина NULL, которая в деструкторе будет сигнализировать о конце вектора. Иначе в деструктор пришлось бы передавать дополнительный параметр n.

Рассмотренная схема выделения памяти не имеет практических ограничений даже для 16-разрядной сегментной модели памяти. Нужно лишь чтобы размер строки и размер вектора указателей не превышал сегмента.

Если массив целиком укладывается в сегмент, то для работы с ним можно предложить следующую схему с меньшими накладными расходами на выделение памяти:
/* Конструктор матрицы */

double **MakeMatr( size_t n, size_t m )

{

double **Matr; size_t i;

Matr = (double**) Malloc( n * sizeof(double *)

+ n * m * sizeof(double) );

for(i = 0; i < n; i++)

Matr[i] = (double *)(Matr + n) + i * m;

return Matr;

}
/* Деструктор матрицы */

void DelMatr( double *Matr[] )

{

free(Matr);

}
При такой организации матрицы память выделяется одним блоком, в котором находится и вектор указателей и сами элементы двумерного массива. Работа с этими матрицами ведется точно также как и с предыдущими.

При некоторых ухищрениях в выделенную область памяти можно поместить и информацию о размерах матрицы, жестко связав размеры с матрицей и таким образом избежать множества математических ошибок, связанных с использованием матриц с несогласованными размерами:
#include

#include

#include
#define MAXVAL 1000
void *Malloc ( size_t size );

double **MakeMatr ( size_t n, size_t m );

void DelMatr ( double *Matr[] );

size_t GetN ( double *Matr[] );

size_t GetM ( double *Matr[] );

void RandomMatr ( double *Matr[] );

void OutMatr ( char *name, double *Matr[] );
void main( void )

{

int n = 5, m = 6;

double **A;

/* Выделение памяти под матрицу */

A = MakeMatr(n, m);

/* Заполнение матрицы значениями и распечатка */

RandomMatr( A );

OutMatr("A", A );

/* освобождение памяти */

DelMatr(A);

}
void RandomMatr ( double *Matr[] )

{

int i, j, n = GetN(Matr), m = GetM(Matr);

for(i = 0; i < n; i++)

for(j = 0; j < m; j++)

Matr[i][j] = random(MAXVAL) + 1;

}
void OutMatr( char *name, double *Matr[] )

{

int i, j, n = GetN(Matr), m = GetM(Matr);

printf("\nМатрица %s\n---------------\n", name);

for(i = 0; i < n; i++)

{

for(j = 0; j < m; j++)

printf("%8.1lf ", Matr[i][j]);

printf("\n");

}

}
void * Malloc( size_t size )

{

void *p = malloc(size);

if( !p )

{ printf("Недостаточно памяти!\n"); exit(1); }

return p;

}
/* Конструктор матрицы */

double **MakeMatr( size_t n, size_t m )

{

double **Matr; size_t i;

Matr = (double**) Malloc( 2 * sizeof(size_t)

+ n * sizeof(double *) );

(size_t *)Matr += 2;

for(i=0; i
Matr[i] = (double *) Malloc( m * sizeof(double) );

Matr[n] = NULL;

*( (size_t *)Matr - 2 ) = n;

*( (size_t *)Matr - 1 ) = m;

return Matr;

}
size_t GetN( double *Matr[] )

{

return *( (size_t *)Matr - 2 );

}
size_t GetM( double *Matr[] )

{

return *( (size_t *)Matr - 1 );

}
/* Деструктор матрицы */

void DelMatr( double *Matr[] )

{

size_t i, n = GetN(Matr);

for(i = 0; i < n; i++) free(Matr[i]);

free( (size_t *)Matr - 2 );

}
В конструкторе теперь выделяется память для хранения n указателей на double и для двух величин типа size_t, которые служат для хранения размеров матрицы. Выделять дополнительный элемент для занесения NULL теперь нет необходимости, так как теперь с помощью функций GetN() и GetM() можно получить соответствующие размеры массива. Способ индексации не изменяется и она по-прежнему выполняется в стиле индексации двумерных массивов.

Такое же скрытое хранение размеров матрицы можно организовать и в случае создания массива в единственном блоке памяти, меньшим сегмента.
  1. 1   ...   28   29   30   31   32   33   34   35   36


написать администратору сайта