Лекция 1 Предмет. Лекция 1 Предмет, задачи, цели, содержание экологии
Скачать 0.7 Mb.
|
Лекция 1 Предмет, задачи, цели, содержание экологии План: 1.1 Предмет и задачи дисциплины 1.2 Связь экологии с другими науками 1.3 разделы и направления экологии . Предмет и задачи дисциплины Термин «экология» (от греческого oikos – жилище, местообитание) введен в литературу в 1866 г. немецким исследователем Э. Геккелем, им дано и общее определение экологии. Э. Геккель писал: «… Под экологией мы подразумеваем общую науку об отношениях организма к окружающей среде, куда мы относим все «условия существования» в широком смысле этого слова». Н. Ф. Реймерс в словаре-справочнике «Природопользование» (1990) указывает, что «экология – это: 1) часть биологии (биоэкология), изучающая отношения организмов (особей, популяций, биоценозов и т. д.) между собой и окружающей средой; 2) дисциплина, изучающая общие законы функционирования экосистем различного иерархического уровня». Тот же автор в другой работе отмечает, что для экологии характерен широкий, системный межотраслевой взгляд… Экология – это совокупность отраслей знания, исследующих взаимодействие между биологически значимыми отдельностями и между ними и окружающей средой. Экология определяется и как «наука, изучающая отношения организмов между собой и окружающей средой, а также организацию и функционирование надорганизменных систем различного уровня: популяций, сообществ и экосистем, природных комплексов и биосферы». При всем многообразии существующих определений экологии основными понятиями в ней, на которых она базируется, являются: живые системы (организмы и их сообщества), взаимодействия и окружающая среда (среда обитания). Таким образом, экология – комплексная дисциплина. Из содержания экологии вытекают ее задачи, которые, прежде всего, заключаются в познании взаимосвязей между растениями, животными, грибами, микроорганизмами и средой их обитания, многообразия организации жизни на Земле, изучении функционирования надорганизменных систем различных уровней. В задачи экологии входит прогнозирование изменений природы под влиянием деятельности человека, научное обеспечение восстановления нарушенных природных систем. Конечная цель экологических исследований состоит в сохранении среды обитания человека. Связь экологии с другими науками Экология, как комплексная дисциплина, тесно связана с другими естественными и общественными науками (рисунок 1.1). Экологическая трактовка необходима при решении определенных задач в области ботаники, зоологии, физиологии, морфологии, систематики, биогеографии, эволюционного учения, генетики, биотехнологии, поскольку любые биологические исследования в той или иной степени изучают жизнь растений и животных в природных условиях. Рисунок 1.1 – Положение экологии среди других биологических наук (по А. С. Степановских, 2003) Экология развивается на природоведческих условиях, вбирает новейшие достижения точных наук – математики, физики, химии, обогащая их, в свою очередь, представлениями о единстве, взаимосвязи живого и неживого. Экология тесно соприкасается с ландшафтоведением – отраслью физической географии, объектами исследования которой являются сложные природные и природноантропогенные образования. Взаимосвязь между физической географией и экологией нашла отражение в становлении геоэкологии (ландшафтной экологии, или экологии ландшафтов). Экология связана и с природопользованием, служит научной основой рационального использования и охраны природных ресурсов. Современная экология анализирует природные условия (факторы) существования живых организмов, включая человека, и их изменения под влиянием разнообразных преобразующих или разрушающих антропогенных воздействий. Природопользование как область прикладной экологии изучает закономерности антропогенной динамики природных процессов в их сложной взаимосвязи, определяет значение этой динамики для человека, обосновывает рациональное использование природных ресурсов и разрабатывает способы сохранения и восстановления их количественных и качественных особенностей, важных для человека современного и для будущих поколений. . Разделы и направления экологии В экологии в соответствии с уровнями организации живого объективно выделяются разделы, изучающие органический мир на уровне особи (организма), популяции, вида, биоценоза, экосистемы (биогеоценоза) и биосферы (рисунок 1.2). В последнее время в экологии принято выделять разделы в зависимости от конкретного биологического объекта (экология растений, экология животных, экология микроорганизмов), среды, местообитания организмов (экология суши, экология озера, моря, экология почвы, гидросферы), уровня организации живого. Одним из разделов экологии является экология человека. В экологии человека выделяют два важных направления. Одно связано с влиянием природной среды и ее компонентов на антропосистему (все структурные уровни человечества, все группы людей и индивидуумы), другое вытекает из необходимости изучать последствия антропогенной деятельности. Современная экология включает в себя следующие направления (рисунок 1.3). В состав современной экологии входят: – общая (классическая) экология, изучающая взаимодействия биологических систем с окружающей средой; – геоэкология (ландшафтная экология), исследующая экосистемы (геоэкосистемы) высоких уровней, до биосферного включительно; интересы геоэкологии сосредоточены на анализе структуры и функционирования ландшафтов (природных комплексов географического ранга), взаимоотношений их составных биотических и косных (абиотических, неживых) компонентов, воздействия общества на природные составляющие; – глобальная экология, изучающая общие законы функционирования биосферы как глобальной экологической системы; – социальная экология, рассматривающая взаимоотношения в системе «общество – природа»; – прикладная экология, изучающая механизмы воздействия человека на биосферу, способы предотвращения негативного воздействия и его последствий, разрабатывающая принципы рационального использования природных ресурсов. Она базируется на законах, правилах и принципах экологии и природопользования. Рисунок 1.2 – Уровни организации материи (по Н. И. Николайкину, 2004) Рисунок 1.3 – Структура современной экологии Одним из направлений современной экологии является экономическая экология, связанная с использованием природных ресурсов. Успешно развивается инженерная экология, решающая вопросы устранения отрицательных последствий вмешательства человека в природные сообщества. При всем многообразии в современной экологии можно выделить три ветви: общая экология (классическая экология), геоэкология и прикладная экология. Классическая экология изучает биологические системы, т. е. занимается исследованием органического мира на уровнях особей, популяций, видов, сообществ. В связи с этим выделяют: – аутэкологию (экологию особей) – (от греч. аutos – сам) – устанавливает пределы существования особи (организма) в окружающей среде, изучает реакции организмов на воздействия факторов среды. Аутэкология в качестве живой системы рассматривает отдельный живой организм – растение, животное или микроорганизм. Термин «аутэкология» был введен швейцарским ботаником К. Шретером в 1896 г.; – демэкологию (экологию популяций) – (от греч. demos – народ) – изучает естественные группы особей одного вида – популяции, условия их формирования, внутрипопуляционные взаимоотношения, динамику численности; – эйдэкологию (экологию видов) – (от греч. eidos – образ, вид) – изучает вид как определенный уровень организации живой природы. В этом направлении проведено еще недостаточно научных исследований; – синэкологию (экологию сообществ) – (от греч. sin – вместе) – изучает ассациации популяций разных видов растений, животных и микроорганизмов, их взаимодействие с окружающей средой. Термин введен К. Шретером в 1902 г. Лекция 2. Организм и среда 2.1 Понятие о среде обитания и условиях существования, характеристика сред жизни 2.2 Экологические факторы и закономерности их действия 2.3 закон минимума, закон толерантности 2.4 Взаимодействие факторов 2.1 Понятие о среде обитания и условиях существования, характеристика сред жизни. Среда – это все, что окружает организм и прямо или косвенно влияет на его состояние, развитие, рост, выживаемость, размножение и т. д. Среда каждого организма слагается из множества элементов неорганической и органической природы и элементов, привносимых человеком, его деятельностью. При этом одни элементы могут быть необходимы организму, другие почти или полностью безразличны для него, третьи оказывают вредное воздействие. Среда обитания организма (организмов) представляет собой окружающую среду. Условия существования, или условия жизни, – это совокупность необходимых для организма элементов среды, с которыми он находится в неразрывном единстве и без которых существовать не может. Организмом является любое живое существо, обладающее совокупностью основных жизненных свойств. Главная и важная закономерность в системе «среда-организм» – это неразрывная связь и взаимное влияние среды и организма. Как организм испытывает воздействие среды (действие комплекса экологических факторов), так и среда претерпевает изменения в результате воздействия живых организмов. Облик нашей планеты был бы совсем иным, если бы на планете не было жизни (в атмосфере не было бы кислорода, не было бы такого явления как почва и др.). Указанная закономерность системы «среда-организм» была сформулирована В. И. Вернадским и получила название закона единства организма и среды его обитания: жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов. Из данного закона следует эволюционно-экологический принцип, согласно которому вид организмов может существовать до тех пор и постольку, поскольку окружающая его среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям. Воздействие вида на среду эволюционно возрастает, что является важной экологической закономерностью. Согласно ей, любая биологическая система, находясь в подвижном равновесии с окружающей ее природной средой и эволюционно развиваясь, увеличивает свое воздействие на среду. Давление на среду растет до тех пор, пока не будет строго ограничено внешними факторами. Различают абиотическую, биотическую, антропогенную среду. Абиотическая среда – совокупность факторов неживой природы (температура, влажность, радиация и др.), в которых существует данный организм. Биотическая среда – совокупность живых организмов, с которыми взаимодействует данный организм. Антропогенная среда – природная среда, непосредственно или косвенно измененная человеком. На Земле выделяют 4 среды жизни: водную, наземно-воздушную, почвенную (почву) и живые организмы (рисунок 2.1). В процессе длительного исторического развития живой материи и формирования все более совершенных форм живых существ организмы, осваивая новые места обитания, распределились на Земле соответственно ее минеральным оболочкам – гидросфере, литосфере, атмосфере и приспособились к существованию в строго определенных условиях. Первой средой жизни стала вода. Именно в ней возникла жизнь. По мере исторического развития организмы начали заселять наземно-воздушную среду. В результате появились наземные растения и животные, которые эволюционировали, адаптируясь к новым условиям существования. В процессе функционирования живого вещества на суше поверхностный слой литосферы постепенно преобразовался в почву. Ее стали заселять водные и наземные организмы, создавая специфический комплекс обитателей. Некоторые низкоорганизованные животные и все растения попадают в свою среду обитания пассивно и выживают, если они к ней приспособлены. Большинство же животных активно выбирают подходящую им среду или даже иногда сами ее создают (например, бобры строят плотины для повышения уровня воды). Водная среда жизни имеет ряд особенностей. Характерной чертой ее является подвижность – она ясно выражена в проточных, быстро текущих реках, ручьях и даже в стоячих водоемах это имеет место. В морях и океанах наблюдаются приливы и отливы, мощные течения, штормы; в озерах вода перемещается под действием ветра и температуры. Движение воды обеспечивает снабжение водных организмов кислородом и питательными веществами, приводит к выравниванию температуры во всем водоеме. Рисунок 2.1 – Основные среды жизни В жизни водных организмов большую роль играет вертикальное перемещение воды. В летнее время наиболее теплые слои воды располагаются у поверхности, а холодные – у дна. Зимой, с понижением температуры, поверхностные холодные воды с температурой ниже 4° С располагаются над сравнительно теплыми. В результате нарушается вертикальная циркуляция воды. Весной поверхностная вода вследствие нагревания до 4° С становится более плотной и погружается вглубь, а на ее место с глубины поднимается более теплая вода. В результате такой вертикальной циркуляции в водоеме на определенное время температура всей водной массы выравнивается. С дальнейшим повышением температуры верхние слои воды становятся все менее плотными и уже не опускаются, возникает температурное расслоение. Осенью поверхностный слой охлаждается, становится более плотным и опускается вглубь, вытесняя на поверхность более теплую воду. Это происходит до наступления осеннего вертикального выравнивания воды. При охлаждении поверхностных вод ниже 4° С они снова становятся менее плотными и опять остаются на поверхности. В результате прекращается циркуляция воды и вновь наступает температурное расслоение. В озерах тропических широт температура воды на поверхности не опускается ниже 4° С, и температурный градиент в них четко выражен до самых глубинных слоев. Перемешивание воды, как правило, происходит здесь нерегулярно в наиболее холодное время года. Вода как среда жизни обладает особыми физико-химическими свойствами. Температурный режим ее коренным образом отличается от такового в других средах. В Мировом океане амплитуда колебаний (различия между крайними значениями) составляет примерно 38° С, при самой низкой около –2° С, а самой высокой +36° С. В пресных внутренних водоемах умеренных широт температура поверхностных слоев воды колеблется от –0,9 до +25° С. Особо благоприятные условия для жизни создают такие термодинамические свойства водной среды как высокая удельная теплоемкость, большая теплопроводность, расширение при замерзании. Эти условия обеспечиваются и высокой скрытой теплотой плавления воды, в результате чего подо льдом температура не бывает ниже точки замерзания ее (для пресных вод около 0° С). Так как наибольшей плотностью вода обладает при 4° С, а при замерзании расширяется, то зимой лед образуется лишь сверху, основная же толща воды не промерзает, что обеспечивает сохранение жизни в водоемах подо льдом. Воде свойственны значительная плотность (в 800 раз больше, чем воздушной среды), вязкость. На растениях эти особенности сказываются в том, что у них слабо или совсем не развивается механическая ткань, поэтому стебли их очень эластичны и легко изгибаются. Большое влияние на водные организмы оказывает свет и световой режим. Особенно он сказывается на распространении растений. Световой режим обусловливается закономерным убыванием с глубиной, так как вода поглощает свет. Он зависит от мутности воды, которая связана с количеством взвешенных в воде частиц. Световой режим изменяется по сезонам года. Существенную роль в жизни водных организмов играет соленость воды. Разные водоемы имеют определенный химический состав. Наибольшее значение имеют карбонаты, сульфаты, хлориды. Количество растворенных солей в 1 л воды в пресных водах не превышает 0,5 г, в океанах и морях оно достигает 35 г. Одним из важнейших газов, содержащихся в воде, является кислород. Основной источник кислорода – фотосинтетическая деятельность зеленых растений, он также поступает из атмосферы. Различные животные проявляют неодинаковую потребность в кислороде. Например, форель очень чувствительна к его дефициту, а плотва и сазан неприхотливы в этом отношении. Углекислый газ, содержащийся в воде, обеспечивает фотосинтез водных растений, а также принимает участие в формировании скелетных образований животных. Содержание углекислого газа в воде в 700 раз больше, чем в атмосфере. Большое значение в жизни водных организмов имеет концентрация водородных ионов (рН). Пресноводные бассейны с рН = 3,7–4,7 считаются кислыми, 6,95–7,30 – нейтральными, с рН больше 7,8 – щелочными. Концентрация водородных ионов играет важную роль в распределении гидробионтов. Большинство пресноводных рыб выдерживают рН от 5 до 9. Если водородный показатель меньше 5, наблюдается массовая гибель рыб, а при величине выше 10 погибают многие рыбы и другие животные. Водная среда заселена многими видами растений и животных – от микроскопических организмов до самых крупных, представленных в современную эпоху. В водной среде обитает примерно 150 000 видов животных, или около 7% общего их количества (рисунок 2.2) и 10 000 видов растений (8%). Рисунок 2.2 – Распределение основных классов животных по средам обитания (по Г. В. Войткевич, В. А. Вронскому, 1989) Особенностью наземно-воздушной среды является то, что организмы, обитающие здесь, окружены воздухом, который представляет собой смесь газов, а не их соединения. Воздух как экологический фактор характеризуется постоянством состава – азота в нем содержится 78,08%, кислорода – около 20,9%, аргона – около 1%, углекислого газа – 0,03%. За счет диоксида углерода и воды синтезируется органическое вещество и выделяется кислород. При дыхании происходит реакция, обратная фотосинтезу – потребление кислорода. Кислород появился на Земле примерно 2 млрд. лет назад, когда происходило формообразование поверхности нашей планеты при активной вулканической деятельности. Постепенное увеличение содержания кислорода происходило в течение последних 20 млн. лет. Главную роль в этом играло развитие растительного мира суши и океана. Без воздуха не могут существовать ни растения, ни животные, ни аэробные микроорганизмы. Большинство животных в этой среде передвигаются по твердому субстрату – почве, а растения укореняются в ней. Воздух как газообразная среда жизни характеризуется низкими показателями влажности, плотности и давления, а также высоким содержанием кислорода. Действующие в наземно-воздушной среде экологические факторы отличаются рядом специфических особенностей: свет здесь по сравнению с другими средами интенсивнее, температура претерпевает более сильные колебания, влажность значительно изменяется в зависимости от географического положения, сезона и времени суток. Воздействие почти всех этих факторов тесно связано с движением воздушных масс – ветра. Воздух, как и другие факторы среды, оказывает на организмы прямое и косвенное действие. При прямом воздействии он имеет небольшое экологическое значение. Косвенное влияние воздуха осуществляется через ветры, которые меняют характер таких важных факторов, как температура и влажность, оказывают механическое действие на организмы. Нередко сильные ветры, дующие в одном направлении, изгибают ветви и стволы деревьев в подветренную сторону, что служит причиной появления флагообразных форм кроны. Ветер вызывает изменение интенсивности транспирации у растений. Это особенно сильно проявляется при суховеях, иссушающих воздух и часто вызывающих гибель растений. Определенную роль играет ветер в опылении растений-анемофилов (ветроопыляемые растения), которые выработали для этого ряд приспособлений: цветочные покровы у них обычно редуцированы и пыльца не защищена от ветра. Восходящие и особенно нисходящие потоки в атмосфере нередко создают условия для застаивания и накопления у поверхности почвы холодного воздуха, что вызывает задержку в развитии растений и животных. Воздушные потоки выполняют определенную роль в расселении растений и животных. Плоды растений (анемохоров) имеют множество приспособлений, увеличивающих их парусность, и разносятся ветром на большие расстояния. Для наземно-воздушной среды, как и для водной, характерна четко выраженная зональность. При этом любые сочетания растительного покрова и животного населения соответствуют морфологическим подразделениям географической оболочки Земли – климатическим зонам. Каждая климатическая зона характеризуется своеобразной растительностью и животным населением. Атмосфера способствует сохранению на планете тепла, которое в противном случае рассеивалось бы в холоде космического пространства. Сама же она благодаря силам притяжения Земли не улетучивается. Атмосфера не только поддерживает жизнь, она служит защитным экраном. На высоте 20–25 км от поверхности Земли под воздействием ультрафиолетовой радиации Солнца часть молекул кислорода расщепляется на свободные атомы кислорода. Последние могут вновь образовывать молекулу кислорода, его трехатомную форму, называемую озоном. Озон, образуя в высших слоях атмосферы тонкий слой – озоновый экран, обеспечивает хрупкой земной жизни дальнейшее ее существование. Почва как среда обитания представляет собой совокупность выветренной материнской породы, живых организмов и продуктов их жизнедеятельности. Почва обладает специфическими физическими свойствами. Для нее характерна более или менее рыхлая структура, определенная водопроницаемость и аэрируемость. Она обладает также своеобразными биологическими особенностями, поскольку тесно связана с жизнедеятельностью организмов. Верхние слои ее содержат массу корней растений. В процессе роста, отмирания и разложения они разрыхляют почву и создают определенную структуру, а вместе с тем и условия для жизни других организмов. Роющие животные перемешивают почвенную массу, а после смерти становятся источником органического вещества для микроорганизмов. Благодаря специфическим свойствам почва выполняет одну из важных функций в жизни различных почвенных организмов и, прежде всего растений, обеспечивая им водоснабжение и минеральное питание. О птимальные запасы доступной для растений почвенной воды (рисунок 2.3) являются чрезвычайно существенным фактором. Рисунок 2.3 – Типы почвенной воды, доступной корням растений (по Н. И. Николайкину, 2004). 1 – частицы почвы; 2 – гигроскопическая вода; 3 – капиллярная вода; 4 – воздух или гравитационная вода В почве различают биологически полезную и биологически бесполезную воду. Биологически полезной является вода, свободно передвигающаяся по капиллярам почвы и бесперебойно снабжающая растения влагой. Значение почвы в водоснабжении растений тем выше, чем она легче отдает им воду, что зависит от структуры почвы и степени набухаемости ее частиц. Различают физическую и физиологическую сухость почвы. При физической сухости почва испытывает недостаток влаги. Происходит это при атмосферной засухе, что обычно наблюдается в сухом климате и в местах, где почва увлажняется только за счет атмосферных осадков. Физиологическая сухость почвы – явление более сложное. Оно возникает в результате физиологической недоступности физически доступной воды. Растения даже на влажных почвах могут испытывать дефицит воды, когда низкая температура почвенного покрова, другие неблагоприятные условия препятствуют нормальному функционированию корневой системы. Так, на сфагновых болотах, несмотря на большое количество влаги, вода оказывается недоступной для многих растений из-за высокой кислотности почвы, плохой аэрации ее и наличия токсических веществ, нарушающих нормальную физиологическую функцию корневой системы. Физиологически сухими являются и сильно засоленные почвы. Из-за высокого осмотического давления почвенного раствора вода засоленных почв для многих растений оказывается недоступной. Почва играет важную роль в минеральном питании растений. Вместе с водой в растения через корневую систему поступает ряд минеральных веществ, находящихся в почве в растворенном состоянии. Однако корневое питание растений – это не простое всасывание веществ, а сложный биохимический процесс, в котором особую роль играют почвенные микроорганизмы, выделения которых усваиваются корневой системой. Поэтому большинство высших растений имеют микоризу, значительно увеличивающую активную поверхность корней. Важную роль в росте и развитии растений играет органическое вещество почвы. Перегной, или гумус, для почвенных обитателей является основным источником необходимых для жизни минеральных соединений и энергии. Он обусловливает плодородие почв и их структуру. Процессы минерализации органических веществ и перегноя обеспечивают постоянное поступление в почвенный раствор таких важнейших элементов питания растений, как азот, фосфор, сера, кальций, калий, микроэлементы. Гумус служит источником физиологически активных соединений (витамины, органические кислоты, полифенолы и др.), которые стимулируют рост растений. Перегнойные вещества обеспечивают также водоустойчивую структуру почв, что создает благоприятный для растений вводно-воздушный режим. Микроорганизмы, растения и животные, обитающие в почве, находятся в постоянном взаимодействии друг с другом, а также со средой обитания. Эти отношения очень сложны и многообразны. Животные и бактерии потребляют растительные углеводы, белки, жиры.Грибы разрушают целлюлозу, в частности древесину. Хищники питаются тканями своих жертв. Благодаря этим взаимоотношениям и в результате коренных изменений физических, химических и биохимических свойств горной породы в природе постоянно происходят почвообразовательные процессы. Живые организмы как среда жизни. Для растений и животных, ведущих симбиотический или паразитический образ жизни, организм, на котором или в котором они поселяются, является специфической средой жизни (рисунок 2.4). Р исунок 2.4 – Живые организмы как среда жизни (по А. С. Степановских, 2003) Термин «симбиоз» означает «совместная жизнь». Различают несколько типов симбиоза, которые будут рассмотрены далее. При паразитизме многие паразиты почти полностью утратили связь с внешним миром – все их стадии проходят в организме хозяина (малярийный плазмодий, трихина спиральная). В процессе эволюции между паразитами и их хозяевами возникли сложные взаимоотношения. Паразит не только зависит от хозяина, но и влияет на него. У хозяина в результате вырабатываются самые различные защитные реакции. Паразиты, в свою очередь, приспосабливаются к этим реакциям, и, таким образом, процесс взаимного приспособления паразита к хозяину и, наоборот, хозяина к паразиту, осуществляется постоянно. Паразитизм как форма межвидовых отношений, которые сформировались на основе пищевых и пространственных связей организмов, не представляют собой резко обособленного явления в природе. С паразитизмом тесно переплетены другие формы биотических отношений: различные формы симбиоза животных с животными, растений с растениями и животных с растениями. 2.2 Экологические факторы и закономерности их действия Компоненты природной среды, влияющие на состояние и свойства организма, популяции, природного сообщества, называют экологическими факторами. Иногда дают более простое определение, понимая под экологическими факторами элементы среды обитания, которые способны оказывать прямое или косвенное влияние на живые организмы. Широта экологической амплитуды по отношению к разным факторам бывает различной. Например, растения могут быть приурочены к узкому диапазону температур, но к широкому диапазону солености. Влияние экологических факторов на живой организм весьма многообразно, однако их действие подчиняется определенным закономерностям. Экологические возможности организмов зависят, прежде всего, от наследственных особенностей. Существенное значение в воздействии экологических факторов на организмы имеет и их интенсивность. Для каждого экологического фактора существует благоприятная интенсивность воздействия, называемая зоной оптимума. При такой интенсивности действия фактора наблюдаются наилучшие условия для жизнедеятельности организмов. Хорошо известны, например, оптимальные температуры цветения, плодоношения, прорастания, икрометания, размножения многих видов. В зависимости от того, какой уровень оптимума наиболее приемлем для видов, среди них различают тепло- и холодолюбивые, влаго- и сухолюбивые, приспособленные к высокой или низкой солености. Чем больше доза фактора отклоняется от оптимальной для данного вида величины, тем сильнее угнетается его жизнедеятельность. Интенсивность экологического фактора, дающая наихудший эффект, приходится на зону угнетения (пессимума). В этом случае организм еще может существовать. Вместе с тем, есть крайние границы его существования, действия того или иного фактора (минимум и максимум). Минимальное и максимальное значения какого-либо фактора – это крайние точки, за пределами которых существование организмов невозможно (рисунок 2.5). Рисунок 2.5 – Схема действия экологических факторовОптимальной температурой развития личинок комнатной мухи является +36°С, понижение и повышение температуры влияет на развитие, жизнедеятельность – при температуре +16°С развитие практически прекращается, а при температуре свыше 43°С личинки и куколки мухи погибают. Если какой-либо из факторов, составляющих условия существования, имеет пессимальное (угнетающее) значение, то он ограничивает действие остальных факторов (сколь бы благоприятны они ни были) и определяет конечный результат действия среды на организмы. Так, распространение многих видов на север ограничивает недостаток тепла, а на юг – недостаток влаги, и эти факторы являются ограничивающими. Изменить конечный результат можно воздействуя только на ограничивающий фактор. 2.3 закон минимума, закон толерантности Существование каждого вида ограничивается тем из факторов, который наиболее отклоняется от оптимума. «Закон ограничивающего фактора» был вначале сформулирован немецким агрохимиком, одним из основоположников агрохимии Юстусом Либихом в 1840 году. Ю. Либих изучал влияние разнообразных факторов на рост растений и установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах, например, как двуокись углерода и вода, а теми, которые требуются в малых количествах (например, бор), но которых и мало в почве. Ю. Либих выдвинул принцип: «Веществом, находящимся в минимуме, управляется урожай». Этот принцип получил широкую известность как закон минимума Ю. Либиха. Согласно этому закону относительное действие отдельного экологического фактора тем сильнее, чем больше он находится по сравнению с другими факторами в минимуме (рисунок 2.6). Закон Ю. Либиха показывает на один из аспектов зависимости организмов от среды, он строго применим в условиях стационарного состояния системы. Если условия среды будут изменяться, то тот или иной процесс также изменится, и будет зависеть от других факторов. Р исунок 2.6 – Модель, иллюстрирующая закон Либиха («Бочка Либиха») Изучая различное лимитирующее действие экологических факторов (таких как свет, тепло, вода) американский зоолог Виктор Эрнест Шелфорд (1877–1968), пришел к выводу, что лимитирующим фактором может быть не только недостаток, но и избыток факторов. В экологию такое положение вошло как закон толерантности В. Шелфорда, сформулированного им в 1913 году. Он гласит: «лимитирующим фактором, ограничивающим развитие организма, может быть как минимум, так и максимум экологического воздействия». Под ограничивающим фактором понимают фактор, уровень которого в качественном и количественном отношении (недостаток или избыток) оказывается близким к пределам выносливости данного организма (рисунок 2.7). Оптимум t,° C Рисунок 2.7 – Влияние температуры на скорость роста растения Пределами выносливости называют минимальное и максимальное значение фактора, при котором возможна жизнедеятельность. Границы, за пределами которых наступает гибель организмов, являются нижними и верхними границами выносливости. Многочисленные примеры действия ограничивающих факторов показывают, что это явление имеет общее экологическое значение. Одним из примеров действия ограничивающего фактора в природе является угнетение травянистых растений, лиственных древесных пород под пологом ели, где возможности развития ограничены недостатком света. Способность организмов выносить отклонения экологических факторов от оптимальных величин их интенсивности называется толерантностью (от латинского – терпение). Организмы могут иметь широкий диапазон толерантности (выносливости) в отношении одного фактора и узкий диапазон в отношении другого. Если условия по одному из экологических факторов не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам. Например, при лимитирующем содержании азота снижается засухоустойчивость злаков; при низком содержании азота для предотвращения увядания растений требуется больше воды, чем при высоком его содержании. Многие факторы среды часто становятся лимитирующими в период размножения, который является обычно критическим для выживания организмов. Пределы толерантности для размножающихся особей обычно уже, чем для не размножающихся взрослых растений или животных. Они также уже для яиц, эмбрионов, личинок, проростков. Чтобы выразить степень выносливости, в экологии существует ряд терминов, в которых используют приставки стено- (узкий) и эври- (широкий). Так, есть стенотермный – эвритермный (в отношении температуры), стенофагный – эврифагный (в отношении пищи), стенобатный – эврибатный (в отношении давления) организмы. Виды, которые выдерживают значительные отклонения от оптимальных значений разных факторов, обладают широким диапазоном выносливости и живут в различных, порой резко отличающихся друг от друга условиях среды, называются эврибионтными. Такие виды являются широко распространенными. Например, лисица относится к эврибионтным организмам, так как она обитает от лесотундры до степи, питаясь и животной, и растительной пищей. Но есть организмы стенобионтные, узко приспособленные, не переносящие резких колебаний температуры, влажности и т. д. Бегемот и буйвол – животные только районов высокой влажности и температуры. Таковы почти все растения влажных тропических лесов. Икра гольца развивается при температуре 0–12° С с оптимумом около 4° С, а икра лягушки развивается при температуре 0–30° С с оптимумом около 22° С. Значит, в первом случае можно говорить о стенотермности, а во втором случае – об эвритермности. Как видно, для каждого организма и в целом для вида есть свой оптимум условий. Он неодинаков не только для разных видов, находящихся в различных условиях, но и для отдельных стадий развития одного организма. Для каждого вида характерна и степень выносливости, например, растения и животные умеренного пояса могут существовать в довольно широком температурном диапазоне, виды же тропического климата не выдерживают значительных колебаний ее. Свойство видов адаптироваться к тому или иному диапазону факторов среды обозначается понятием экологическая пластичность (экологическая валентность) вида. Чем шире диапазон колебаний экологического фактора, в пределах которого данный вид может существовать, тем больше его экологическая пластичность, тем шире диапазон его толерантности (выносливости). Экологически непластичные, то есть маловыносливые виды, являются стенобионтными, более выносливые – эврибионтными. Стенобионтность и эврибионтность характеризуют различные типы приспособления организмов к выживанию. Виды, длительно развивавшиеся в относительно стабильных условиях, утрачивают экологическую пластичность и вырабатывают черты стенобионтности, в то время как виды, существовавшие при значительных колебаниях факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными, то есть видами с широким диапазоном толерантности (рисунок 2.8). Рисунок 2.8 – Экологическая пластичность видов (по Ю. Одум, 1975) Поскольку все факторы среды взаимосвязаны и среди них нет абсолютно безразличных для любого организма, каждая популяция и вид в целом реагируют на эти факторы, но воспринимают их по-разному. Такая избирательность обусловливает и избирательное отношение организмов к заселению той или иной территории. Различные виды организмов предъявляют неодинаковые требования к почвенным условиям, температуре, влажности, свету и т. д. Поэтому на разных почвах в разных климатических поясах произрастают различные растения. В свою очередь в растительных ассоциациях формируются неодинаковые условия для животных. Исторически приспосабливаясь к абиотическим факторам среды и вступая в определенные биотические связи друг с другом, растения, животные, грибы, микроорганизмы распределяются по различным средам и формируют многообразные экосистемы (биогеоценозы), в конечном итоге объединяющиеся в биосферу Земли. 2.4 Взаимодействие факторов Факторы среды воздействуют на организмы одновременно и совместно, действие каждого из них зависит от количественного выражения других факторов. Значит, важным является взаимодействие факторов. В природной среде действие факторов на организм может суммироваться, взаимно усиливаться или компенсироваться. Примером простой суммации факторов являются одновременные чувства голода и жажды при недостатке пищи и воды. Высокая радиоактивность среды и одновременное содержание нитратного азота в питьевой воде, пище в несколько раз увеличивают угрозу здоровью человека, чем каждый из этих факторов в отдельности. Действуя совместно, взаимно усиливаясь, экологические факторы могут вызывать явление синергизма. Следствием этого является снижение жизнеспособности организма (более подробно данное положение рассматривается в разделе по экологии атмосферы). В качестве примеров компенсации действия одного фактора другим можно привести следующие: утки, оставшиеся зимовать в умеренных широтах, недостаток тепла возмещают обильным питанием; бедность почвы во влажном экваториальном лесу компенсируется быстрым и эффективным круговоротом веществ; в местах, где много стронция, моллюски могут заменять в своих раковинах кальций стронцием. Однако, несмотря на частичную заменяемость экологических факторов, ни один из них не может быть полностью заменен другим. Каждый из экологических факторов является незаменимым. Так, недостаток тепла нельзя заменить обилием света, а минеральные элементы, необходимые для питания растений, – водой. Таким образом, для жизни организма необходима совокупность экологических факторов, каждый из которых имеет определенную интенсивность. Факторы среды действуют на организмы совместно и одновременно. Присутствие и процветание организмов в том или ином местообитании зависят от целого комплекса условий. С этими объективно существующими в природе закономерностями специалисту любого профиля надо считаться. Человек, действуя на окружающую среду, создает в ней новые экологические факторы, действие которых может превысить возможности организмов поддерживать существование. Выявление лимитирующих (ограничивающих) факторов и устранение их ограничивающего действия или оптимизация среды для организмов составляет важную практическую задачу в рациональном использовании природных ресурсов. |