Главная страница

ЛИТЕЙНЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ. Литейные алюминиевые сплавы


Скачать 19.61 Kb.
НазваниеЛитейные алюминиевые сплавы
Дата18.12.2021
Размер19.61 Kb.
Формат файлаdocx
Имя файлаЛИТЕЙНЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ.docx
ТипДокументы
#307847


ЛИТЕЙНЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

Сплавы для фасонного литья должны обладать высокой жидкотекучестью, сравнительно небольшой усадкой, малой склонностью к образованию горячих трещин и пористости в сочетании с хорошими механическими свойствами, сопротивлением коррозии и др.

Высокими литейными свойствами обладают сплавы, содержащие в своей структуре эвтектику. Эвтектика образуется во многих сплавах, в которых содержание легирующих элементов больше предельной растворимости в алюминии. В связи с этим содержание легирующих элементов в литейных сплавах выше, чем в деформируемых. Чаще применяют сплавы А1—Si, А1—Си, А1—Mg (табл. 36), которые дополнительно легируют небольшим количеством меди и магния (А1—Si), марганца, никеля, хрома (А1—Си). Для измельчения зерна, а следовательно, улучшения механических свойств в сплавы вводят модифицирующие добавки: Ti, Zr, В, V и др. Состав и механические свойства некоторых литейных сплавов алюминия приведены в табл. 36.

Многие отливки из алюминиевых сплавов подвергают термической обработке. В зависимости от характера отливки и условий ее, работы используют один из видов термической обработки, приведенных ниже.

1. Йскусственное старение (условное обозначение Т1) при (175 ± 5) °С в течение 5—20 ч без предварительной закалки. При литье многих сплавов (АЛ4, АЛ5, АЛЗ) в сырую песчаную форму или в кокиль происходит частичная закалка, поэтому старение повышает прочность и улучшает обработку резанием.

2. Отжиг (Т2) при 300 °С в течение 5—10 ч. Охлаждение при отжиге проводят на воздухе. Отжиг применяют для снятия литейных напряжений, а также остаточных напряжений, вызванных механической обработкой. Отжиг несколько повышает пластичность.

3. Закалка и естественное старение (ТЗ, Т4). Температура закалки 510—520 °С для сплавов АЛ1, АЛ7 и 535—545 °С для сплавов АЛ4, АЛ9, АЛ 19 и др. Так как после закалки отливки выдерживают достаточно длительное время при нормальной температуре, режим (ТЗ) практически соответствует закалке и естественному старению (Т4).

4. Закалка и кратковременное (2—3 ч) искусственное старение обычно при 150—175 °С (Т5). При данной температуре и продолжительности процесс старения полностью не заканчивается, поэтому после такой обработки отливки приобретают высокую прочность при сохранении повышенной пластичности.

5. Закалка и полное искусственное старение (Тб) при 200 °С 3—5 ч. Старение при повышенной температуре по сравнению

Рис. 186. Диаграмма состояния А1—Si (а) и влияние кремния на механические свойства сплавов:

штриховая линия — диаграмма ооотояння после модифицирования механические свойства после модифицирования; 2 — механические свойства до модифицирования

с режимом Т5 придает наибольшую прочность, но пластичность снижает.

6. Закалка и стабилизирующий отпуск (Т7) при 230 °С для сплавов АЛ9, АЛ5, АЛ1 и при 250 °С для сплава АЛ 19 в течение 3—10 ч. Этот вид обработки используют для стабилизации структуры и объемных изменений отливки при сохранении достаточной прочности.

7. Закалка и смягчающий отпуск (Т8) при 240—260 °С в течение 3—5 ч. Высокая температура отпуска заметно снижает прочность, но повышает пластичность и стабильность размеров.

Сплавы А1—SI. Эти сплавы (см. табл. 36), получившие название силумины, близки по составу к эвтектическому сплаву (рис. 186, а) и потому отличаются высокими литейными свойствами, а отливки — большой плотностью.

Наиболее распространен сплав, содержащий 10—13 % Si (АЛ2), обладающий высокой коррозионной стойкостью. Сплав АЛ2 содержит в структуре эвтектику a -f- Р и нередко первичные кристаллы кремния (см. рис. 187, а). Кремний при затвердении эвтектики выделяется в виде грубых кристаллов игольчатой формы, которые играют роль внутренних надрезов в пластичном а-твер- дом растворе. Такая структура обладает низкими механическими свойствами (см. рис. 186).

Для измельчения структуры эвтектики и устранения избыточных кристаллов кремния силумины модифицируют натрием (0,05—0,08 %) путем присадки к расплаву смеси солей 67 % NaF и 33 % NaCl. В присутствии натрия происходит смещение линий диаграммы состояния (см. рис. 186, а) и заэвтектический (эвтектический) сплав АЛ2 (11—13 % Si) становится доэвтектическим. В этом случае в структуре сплава вместо избыточного кремния появляются кристаллы а-раствора (рис. 187, б). Эвтектика приобретает более тонкое строение и состоит из мелких кристаллов p-(Si) и а-твердого раствора. В процессе затвердевания кристаллы

X7. Микроструктура силумина

Рис. 1X7. Микроструктура силумина:

а — до модифицирования; б — после модифицирования

кремнии обволакиваются пленкой силицида натрия Na2Si, которая затрудняет их рост. Такие изменения структуры улучшают механические свойства сплава (см. рис. 186, б). Сплав АЛ2 не подвергают упрочняющей термической обработке. Доэвтекти- ческие сплавы АЛ4 и АЛ9 (см. табл. 36), дополнительно легированные магнием, могут упрочняться кроме модифицирования термической обработкой. Упрочняющей фазой служит Mg2Si. При одновременном введении магнии и меди могут образоваться фазы СиА12 и W(AlxMg5Cii4Si4).

Средненагруженные детали из сплава АЛ4 подвергают только искусственному старению (Т1), а крупные нагруженные детали (корпуса компрессоров, картеры и блоки цилиндров двигателей и т. д.) — закалке и искусственному старению (Тб). Отливки из сплава АЛ9, требующие повышенной пластичности, подвергают закалке (Т4), а для повышения прочности — закалке и старению (Тб). Когда важна высокая пластичность и стабильность размеров, после закалки проводят отпуск при 250 °С в течение 3— 5 ч.

Сплавы А1—Si сравнительно легко обрабатываются резанием. Заварку дефектов можно производить газовой и аргонодуговой сваркой.

Сплавы AI—Си. Эти сплавы (АЛ7, АЛ 19) после термической обработки имеют высокие механические свойства при нормальной и повышенных температурах и хорошо обрабатываются резанием. Литейные свойства сплавов низкие (большая усадка, склонность к образованию горячих трещин и т. д.). Сплав АЛ7 используют для отливки небольших деталей простой формы (арматура, кронштейн и т. д.). Сплав склонен к хрупкому разрушению вследствие выделения по границам зерен грубых частиц СиА1а и Al7Cu2Fe (см. рис. 183, а) поэтому его применяют в закаленном состоянии (Т4), когда эти соединения переведены в твердый раствор. Если от отливок требуется повышенная прочность, то их после закалки подвергают искусственному старению при 150 °С 2—4 ч (Т5).

В сплаве АЛ 19 кроме СиА12 образуются фазы Al12Mn2Cu и Al3Ti, располагающиеся по границам зерен твердого раствора. Присутствие в твердом растворе марганца и образование по границам интерметаллидных фаз повышает жаропрочность сплава. Титан измельчает зерно.

Упрочнение сплава достигается закалкой и старением при 175 °С 3—5 ч (Т5, Тб). Сплавы А1—Си малоустойчивы против коррозии, поэтому отливки обычно анодируют.

Сплавы А1—Mg. Сплавы алюминия с магнием (см. табл. 36) имеют низкие литейные свойства, так как не содержат эвтектики. Характерной особенностью этих сплавов является хорошая коррозионная стойкость, повышенные механические свойства и обрабатываемость резанием. Добавление к сплаву (9,5—11,5 % Мо) модифицирующих присадок (Ti, Zr) улучшает механические свойства, а бериллия — уменьшает окисляемость расплава, что позволяет вести плавку без защитных флюсов.

Сплавы АЛ8 и АЛ27 предназначены для отливок, работающих во влажной атмосфере, например в судостроении и авиации. Структура сплавов (см. рис. 185, а) состоит из a-твердого раствора и грубых включений частиц Al8Mga, которые располагаются по границам зерен, охрупчивая сплав. В связи с этим сплавы АЛ8 и АЛ27 применяют после закалки от 430 ЛС с охлаждением в масле (40—50

С) и выдерживают при температуре закалки в течение 12—20 ч, что обеспечивает растворение частиц Al3Mga в «-твердом растворе и получение после закалки однородного твердого раствора. Добавление к сплавам А1—Mg до 1,5 % Si (сплавы АЛ 13, АЛ22) улучшает литейные свойстза в результате образования тройной эвтектики. Сплавы применяют в судостроении и авиации.

Жаропрочные сплавы. Наибольшее применение получил сплав АЛ1, из которого изготовляют поршни, головки цилиндров и другие детали, работающие при температуре 275—300 °С. Структура литого сплава АЛ1 состоит из а-твердого раствора, содержащего Си, Mg и Ni и избыточных фаз AlaCuMg и Al„Cu3Ni. Отливки применяют после закалки и кратковременного старения при 175 С (Т5); поршни подвергают закалке и старению при 200 °С (Т7). При закалке S-фаза растворяется в a-твердом растворе.

Более жаропрочны сплавы АЛЗЗ и АЛ 19. Ниже приведена длительная прочность жаропрочных алюминиевых сплавов:

высокая жаропрочность обусловлена добавками в сплавы Мп, Ti, Ni, Се, Zr (см. табл. 36), образующими нерастворимые (малорастворимые) интерметаллидные фазы (Al6Cu3, А12Се, AlaZr и др.). Сплав АЛЗЗ упрочняют закалкой от высокой температуры 545 °С и старением при 175 СС.

Для крупногабаритных деталей, работающих при 300—350 °С, применяют сплав АЛ21. Отливки сложной формы из сплава подвергают отжигу при 300 °С. Для получения высоких механических свойств отливки закаливают от 525 °С в горячей воде и подвергают стабилизирующему отпуску при 300 °С (Т7).

Основные требования – это сочетание хороших литейных свойств (высокой жидкотекучести, небольшой усадки, малой склонности к образованию горячих трещин и пористости) с оптимальными механическими и химическими свойствами.

Конструкционные герметичные сплавы систем Al-Si (AЛ-2) Al-Si-Mg (АЛ4, АЛ9, АЛ34). Силумины обладают хорошими литейными свойствами, удовлетворительной обрабатываемостью резанием и коррозионной стойкостью. В то же время структура сплава АЛ2, представляющая собой игольчатую грубую эвтектику с включениями кристаллов первичного кремния, не обеспечивает требуемых механических свойств. Термической обработкой этот сплав не упрочняется.

Легированные силумины АЛ4, АЛ9, АЛ34 упрочняются термической обработкой. Эти сплавы используют для изготовления средних и крупных литых деталей (корпусов компрессоров, картеров двигателей внутреннего сгорания). Сплав АЛ34 применяется для отливок, получаемых литьем под давлением (блоков цилиндров автомобильных двигателей), и отличается хорошим комплексом технологических свойств.

Высокопрочные и жаропрочные литейные сплавы.

В эту группу входят сплавы системы Al-Cu-Mn (АЛ19), Al-Cu-Mn-Ni (АЛ33). Легирование сплава АЛ19 титаном обеспечивает ему высокие механические свойства (в том числе и динамическое нагружение) при комнатной и низких температурах, а дополнительное легирование церием и цирконием – жаропрочность при температурах до 350 С. Сплав отличается хорошей обрабатываемостью резанием и свариваемостью, но пониженной коррозионной стойкостью и имеет пониженные литейные свойства. Сплав упрочняется закалкой с 545 С (12ч) и старением при 175 С (3…6ч). Сплав широко используется для литья крупногабаритных отливок в песчаные формы.

Коррозионностойкие литейные алюминиевые сплавы

Сплавы системы Al-Mg (АЛ8, АЛ27) и Al-Mg-Zn (АЛ24) обладают высокой коррозионной стойкостью во многих агрессивных средах, обрабатываются резанием и свариваются. Сплавы (АЛ8, АЛ27) подвергаются закалке в масле без старения. Имеют плохие литейные свойства и низкую (до 80 С) жаропрочность. Жаропрочность сплава АЛ24 сохранияется до 150 С.

Сплавы способны работать в условиях коррозии морской воды вместо дефицитных бронз, латуней и нержавеющих сталей.

Спеченные алюминиевые сплавы(порошковые и гранулированные) характеризуются повышенными механическими и физическими свойствами.

Спеченный алюминиевый порошок (САП) – это материал, полученный холодным, а затем горячим брикетированием ( прессованием под давлением 700 МПа при 500…600 С) предварительно окисленной алюминиевой пудры. Затем из брикетов ковкой, прокаткой или прессованием изготавливают изделия или полуфабрикаты. Поскольку каждая частичка пудры покрыта тонким слоем оксида алюминия, то чем тоньше пудра, тем больше в САПе иоксида алюминия, выше его прочность, но ниже пластичность. В САПе содержится от 6 до 22% Al2O3 . САП характеризуется высокой прочностью и жаропрочностью при повышенных температурах (350…500 С).

Разновидностью САПа является сплав СПАК-4 (системы Al-Cu-Mg-Al2O3), в котором впервые использовано совместное упрочнение алюминиевой матрицы оксидами (Al2O3) и интерметаллидами (например Al9FeNi) и др.). Обладая высокой длительной прочностью при 350 С (в 2…2,5 раза большей, чем у сплава АК4-1), сплав СПАК4 может применяться для работающих на форсированных режимах поршней.


написать администратору сайта