Главная страница

Химия документы. Неорганическая химия. Шпаргалки_А.А. Дроздов, М.В. Дроздова_2008. М. В. Дроздова, А. А. Дроздов Неорганическая химия. Шпаргалки


Скачать 0.6 Mb.
НазваниеМ. В. Дроздова, А. А. Дроздов Неорганическая химия. Шпаргалки
АнкорХимия документы
Дата09.11.2019
Размер0.6 Mb.
Формат файлаdoc
Имя файлаНеорганическая химия. Шпаргалки_А.А. Дроздов, М.В. Дроздова_2008.doc
ТипДокументы
#94218
страница8 из 13
1   ...   5   6   7   8   9   10   11   12   13

23. Буферные системы крови.Плазма крови


Большое значение буферные системы имеют в под–держании кислотно-основного равновесия организмов. Внутриклеточные и внеклеточные жидкости всех живых организмов характеризуются постоянным значением рН, которое поддерживается с помощью буферных систем. Значение рН большей части внутриклеточных жидко–стей находится в интервале от 6,8 до 7,8.

Кислотно-основное равновесие КО-равновесия в крови человека обеспечивается водород-карбонатной, фосфат–ной и белковой буферными системами.

Нормальное значение рН плазмы крови составляет 7,40 ± 0 05. Этому соответствует интервал значений активной кислотности от 3,7 до 4,0х10-8 моль/л. Так как в крови присутствуют различные электролиты (HC03 –, H2CO3 , Н2РО4 –, НРО42- ), белки, аминокислоты, это озна–чает, что они диссоциируют в такой степени, чтобы ак–тивность а(Н+) находилась в указанном интервале.

В связи с тем что содержание неорганических и ор–ганических веществ в плазме и клетках крови неоди–наково, целесообразно рассмотреть эти составляющие крови отдельно.

Плазма крови

Водород-карбонатная буферная система НСО3 –/ Н2СО3 состоит из угольной кислоты Н2СО3 и сопряжен–ного основания НСО3 –. Это наиболее важная буфер–ная система крови. Одим из компонентов – угольная кислота Н2СО3 – образуется при взаимодействии раст–воренного в плазме СО2 с водой:

СО2(р) + Н2О н Н2СО3.

где СО2(р) – концентрация растворенного СО2 .

Константа равновесия этой реакции:

К = [Н2СО3] / [СО2]

Между СО2 в альвеолах и водород-карбонатным буфером в плазме крови, протекающей через ка–пилляры легких, устанавливается цепочка равновесий.

Водород-карбонатная буферная система действует как эффективный физиологический буферный раствор вблизи рН7,4.

При поступлении в кровь кислот – доноров Н+ равно–весие в цепочке по принципу Ле Шателье смещается влево в результате того, что ионы НСО3 связывают ионы Н в молекулы Н2СО3 . При этом концентрация Н2СО3 по–вышается, а концентрация ионов НСО3 понижается. По–вышение концентрации Н2СО3 приводит к смещению равновесия влево, (принцип Ле Шателье). Это вызывает распад Н2СО3 и увеличение концентрации СО2 , раство–ренного в плазме. В результате смещается равновесие влево и повышается давление СО2 в легких. Избыток СО2 выводится из организма.

В результате водород-карбонатная система крови быстро приходит в равновесие с СO2 в альвеолах и эф–фективно обеспечивает поддержание постоянства рН плазмы крови.



Таким образом, поддерживается нормальное зна–чение рН крови при слабо выраженном сдвиге рН, об–условленном ацидозом.

В замкнутых помещениях часто испытывают удушье (нехватку кислорода), учащение дыхания. Однако удушье связано не столько с недостатком кислорода, сколько с избытком СО2 .

Избыток СO2 в атмосфере согласно закону Генри при–водит к дополнительному растворению СO2 в крови. А это приводит к понижению рН крови, т. е. к ацидозу.

Водород-карбонатная буферная система наиболее быстро отзывается на изменение рН крови. Ее буферная емкость по кислоте составляет Вк = 40 ммоль/л плазмы крови, а буферная емкость по щелочи значительно мень–ше и равна примерно Вщ = 1—2 ммоль/л плазмы крови.

24. Реакции нейтрализации


Реакциями нейтрализации называются обменные реакции взаимодействия кислот и оснований, в резуль–тате которых образуются соль и вода.

Рассмотрим различные типы реакций нейтрализации.

1. Нейтрализация сильного основания сильной кис–лотой:

КОН + HNO3 – KNO3 + Н2O.

Молекулярно-ионное уравнение такой реакции Н+ + OН- → Н2O

и отрицательное значение энергии Гиббса ΔG° пока–зывают, что равновесие практически смещено в сто–рону образования воды.

Общим случаем реакции нейтрализации является взаимодействие кислот и оснований, различающихся по силе (степени диссоциации). Эти реакции не дохо–дят до конца вследствие протекания обратной реакции гидролиза соли.

2. Нейтрализация слабой кислоты сильным основа–нием:



или в молекулярно-ионном виде:



В данном случае реакция нейтрализации обратима. Обратима и реакция нейтрализации слабого основа–ния сильной кислотой:



или в молекулярно-ионном виде:



а также – слабого основания слабой кисло–той:



или в молекулярно-ионном виде:



В данных системах равновесие сильно смещено вправо, так как вода значительно более слабый элек–тролит, чем синильная кислота, аммиак и уксусная ки–слота.

Реакции нейтрализации лежат в основе метода нейтра–лизации. Этот метод используют в клинических лабора–ториях для определения кислотности желудочного сока, буферной емкости плазмы крови. В фармакологии его применяют для количественного анализа неорганиче–ских кислот (соляной, серной, борной) и органических кислот (уксусной, бензойной, винной, лимонной, сали–циловой). В биофармацевтических исследованиях методом нейтрализации определяют рКа кислот и рКь оснований, так как по значению этих величин можно прогнозировать способность лекарственных препара–тов проходить через биологические мембраны.

Применяют кислотно-основное титрование для опре–деления рКа аминокислот и рКа диссоциирующих групп, входящих в белки. По кривым титрования белков, полу–ченным при двух различных температурах, можно опре–делить число карбоксильных, имидазольных и других групп. Титрование аминокислот и белков дает возмож–ность определить их изоэлектрические точки.

Под гидролизом понимают реакцию разложения ве–щества водой.

Гидролизу могут подвергаться химические соедине–ния различных классов: белки, жиры, углеводы, эфиры, соли и т. д. В неорганической химии чаще всего встре–чаются с гидролизом солей.
1   ...   5   6   7   8   9   10   11   12   13


написать администратору сайта