Главная страница

КОМПАС-3D V10 на 100%. Максим Иванович Кидрук компас3d v10 на 100 %


Скачать 13.81 Mb.
НазваниеМаксим Иванович Кидрук компас3d v10 на 100 %
АнкорКОМПАС-3D V10 на 100%.pdf
Дата20.09.2017
Размер13.81 Mb.
Формат файлаpdf
Имя файлаКОМПАС-3D V10 на 100%.pdf
ТипДокументы
#8845
страница40 из 47
1   ...   36   37   38   39   40   41   42   43   ...   47
Компания «АСКОН» уделяет немалое внимание обеспечению такого обмена данными. В КОМПАС возможно чтение графических файлов форматов DXF, DWG и IGES; можно открывать и записывать файлы моделей форматов STEP, IGES, Parasolid; есть отдельное приложение – Библиотека поддержки формата model (CATIA), обеспечивающее чтение файлов model системы CATIA 4 в КОМПАС-График. Например, вы легко можете импортировать модель или поверхность, созданную в Solid Edge или Unigraphics, и использовать ее в своей сборке. Однако этого бывает недостаточно. Всегда ли модели, созданные другими конструкторами в других системах, неизвестно как давно и кем после того измененные, подходят для вашей сборки? Скорее всего, нет, и перед использованием их часто приходится редактировать. Как это сделать? Можно отредактировать модель в
«родительском» редакторе, заново сохранить и потом перенести в КОМПАС. А если на рабочем месте проектировщика в данный момент нет того графического редактора, в котором эта модель создавалась? Тогда можно редактировать средствами КОМПАС, но, так как модель не имеет базовой операции, эскизов и пр., эта задача становится нелегкой и наверняка отнимет много времени. Вот в этом случае значительную помощь
конструктору может оказать еще один подключаемый модуль для КОМПАС-3D —Система распознавания 3D- моделей.
Главное назначение этого приложения состоит в том, чтобы распознать элементы детали, импортируемой в среду КОМПАС-3D, на основе чего создать ее трехмерный аналог, сформированный инструментами моделирования КОМПАС. Проще говоря – отобразить дерево построения для импортированной детали. Система ориентирована на распознавание деталей средней сложности с учетом определенных ограничений (не распознаются тела с гранями, образованными NURBS-поверхностями, тела вращения должны иметь угол 360°, операции выдавливания не должны иметь уклона и пр.). Однако даже если система не может корректно отобразить все операции, то эскизы, параметры которых не удалось определить до конца, все равно будут отображены. Это позволит без проблем доработать деталь вручную.
Рассмотрим работу данной библиотеки на примере.
Предположим, что у нас имеется трехмерная модель ступицы роликовой обгонной муфты, созданная в каком-нибудь графическом редакторе и сохраненная в формат STEP (файл этой ступицы Nave.stp вы можете взять из папки Examples\Глава 5\Распознавание компакт-диска, прилагаемого к книге). Чтобы загрузить ее в
КОМПАС, необходимо выполнить команду меню Файл → Открыть, после чего в диалоговом окне открытия файла в раскрывающемся списке Тип файла выбрать пункт STEP AP203 (*.stp, *.step). Система автоматически создаст новый документ-деталь, в который и будет помещена импортируемая деталь (рис. 5.18). Обратите внимание: модель в окне представления документа прочитана полностью, но в дереве построения нет ни одной операции – модель импортируется целиком, другими словами, без истории.

Рис. 5.18.
Трехмерная модель ступицы, импортированная в систему КОМПАС через обменный формат STEP
Теперь зайдите в менеджер библиотек, раскройте раздел Прочие и щелкните на строке Система распознавания 3D-моделей.
Выполните команду Параметры, дважды щелкнув на соответствующей строке. В появившемся окне настроек библиотеки установите переключатель Документ модели в положение создать новую деталь/сборку (рис. 5.19).
Нажмите OK для подтверждения внесенных изменений.

Рис. 5.19.
Диалоговое окно Параметры распознавания
Проследите, чтобы документ с импортированной деталью был активен, и запустите команду Распознавание элементов. За считанные секунды библиотека проведет распознавание трехмерных элементов и по возможности подберет им замену среди формообразующих операций системы КОМПАС-3D. Конечно, сами операции и их порядок в дереве далеки от оптимального (рис. 5.20). Распознанная модель состоит из 24 формообразующих операций, 18 конструктивных плоскостей и 10 вспомогательных осей, тогда как точно такую же модель вручную можно создать, применив лишь 5 операций и 1 конструктивную ось. Однако распознать такую деталь всего за 3–4
секунды значительно проще, нежели создавать ее самому «с нуля». Более того, при распознавании все эскизы параметризируются, и вы теперь легко можете изменять и редактировать конфигурацию детали.
Рис. 5.20.
Распознанная модель с полностью сформированным деревом построения
Примечание
Для данного примера специально выбрана деталь, которая была распознана полностью. Как правило, очень сложные детали не распознаются до конца. Однако, как уже было отмечено выше, вы можете без труда доработать их самостоятельно – это все равно сэкономит вам время.

Файлы ступицы, загруженной в КОМПАС (Ступица.m3d), и распознанной ступицы (Ступица
(распознана).m3d) находятся на прилагаемом к книге компакт-диске в папке Examples\Глава 5\Распознавание.
Библиотека муфт
Ускорение процесса трехмерного проектирования и конструирования всегда является основной проблемой для разработчиков любой CAD-системы. Однако, несмотря на это, количество узконаправленных прикладных 3D- библиотек не так уж велико (их значительно меньше, чем аналогичных библиотек для двухмерного проектирования). В основном это приложения для автоматизированного моделирования тел вращения (валов, зубчатых колес) или технологической оснастки. И это учитывая тот факт, что 3D-моделирование при проектных работах на промышленных предприятиях с каждым годом используется все больше и больше.
Ни для кого не секрет, что построить большую трехмерную сборку определенного объекта часто бывает сложнее, чем создать сборочный чертеж того же объекта. При этом многие компоненты, входящие в сборку, не являются уникальными деталями, а их создание лишь отнимает время, замедляя проектирование. Такими компонентами могут быть пружины, болты, гайки, шпонки, словом, все, что уже давно описано в стандартах.
Однако согласитесь, не только элементы крепежа или другие простенькие детали являются стандартизованными.
Многие значительно более сложные механизмы изготовляются и собираются согласно требованиям ГОСТ, ОСТ, нормалей и т. п. Моделирование таких механизмов вручную всегда доставляет проектировщику немало хлопот, зачастую отнимая намного больше времени, чем разработка и построение моделей уникальных деталей.
Описываемая здесь Библиотека муфт является приложением, позволяющим быстро создавать достаточно сложные модели машиностроительных муфт и использовать их в разрабатываемых сборках для соединения валов.
С помощью этого приложения можно создавать муфты следующих типов (рис. 5.21):

• глухие муфты:
— фланцевые по ГОСТ 20761—96;
— продольно-свертные по ГОСТ 23106—78 (ред. 1990 г.);
• муфты жесткие компенсирующие:
— зубчатые по ГОСТ Р 50895—96;
— с промежуточным подвижным элементом (со скользящим сухарем (крестовые) и кулачково-дисковые по
ГОСТ 20720—93);
— шарнирные малогабаритные по ГОСТ 5147—80;
• муфты упругие компенсирующие:
— упругие втулочно-пальцевые по ГОСТ 21424—93;
— с резиновой звездочкой по ГОСТ 14084—93;
— с торообразной резиновой оболочкой по нормали МН 5809—65;
• другие конструкции:
— муфта роликовая обгонная (свободного хода) по ОСТ 27-60-721—84;
— предохранительная со срезным штифтом.

Рис. 5.21.
Различные типы машиностроительных муфт, созданные с помощью библиотеки
Библиотека муфт может также оказать существенную помощь и для инженеров, работающих в КОМПАС-
График. В этом случае проектировщику доступны все те же типоразмеры и конфигурации муфт, что и при трехмерном моделировании, но в чертеж или фрагмент муфта может вставляться в любом из трех видов (главный, сбоку, сверху). В библиотеке предусмотрена возможность автоматического создания вырезов на главном виде или на виде слева почти для всех типов муфт. При вставке чертежа муфты в графический документ можно выбирать точку привязки (точку, к которой будет привязано изображение в момент перемещения и вставки), а также запрещать или разрешать автоматическую простановку характерных размеров муфты на чертеже. Как и
трехмерную модель, изображение муфты можно редактировать с помощью библиотеки вручную, а также используя перетаскивание за характерные точки (таких точек может быть от 1 до 4, в зависимости от типа муфты).
В обоих случаях (как для трехмерного моделирования, так и для плоского черчения) Библиотека муфт позволяет автоматически создавать объект спецификации.
Бесплатные библиотеки
Перечисленные выше библиотеки и приложения – это далеко не все, с помощью чего система КОМПАС-3D облегчает жизнь инженеру. Есть еще много других утилит, которые входят в стандартную поставку или распространяются отдельно и предназначены для применения в различных сферах промышленности. Это, в частности, библиотеки трубопроводной арматуры, проектирования систем вентиляции, энергетического оборудования, контрольно-измерительных приборов и автоматики, архитектурных элементов, элементов электротехнических устройств, система проектирования металлоконструкций и пр.
Кроме того, «АСКОН» предлагает обширный комплект библиотек для КОМПАС, которые распространяются бесплатно и решают большой круг различных по структуре задач: от рисования осевых линий до моделирования сложнейших 3D-сборок. Это модули, созданные пользователями системы, которые разрабатывали их для своих нужд, а потом решили сделать свои творения достоянием общественности. Скачать эти библиотеки можно с сайта технической поддержки http://support.ascon.ru/download.php?act=cat&cat=3.
На сайте представлены различные библиотеки. Их можно условно разделить на две группы:
• библиотеки фрагментов (как параметризированных, так и нет), содержащие изображения разных приспособлений и техники;

• конструкторские библиотеки, как правило, небольшие по объему и выполняющие ограниченное количество операций с чертежами или моделями, но зачастую очень полезные.
Самыми интересными и полезными из бесплатных приложений, выложенных на сайте, являются библиотеки второй группы. Созданные простыми пользователями, они автоматизируют или расширяют стандартные инструменты графического редактора, удобно подстраивая их под потребности проектировщика. Один раз попробовав эти небольшие модули в работе, вам будет непросто отказаться от их использования. Рассмотрим некоторые из них.
Неплохие возможности предоставляет библиотека Текст на кривой, которая позволяет создавать текст в
КОМПАС-График, используя в качестве направляющих любые кривые. Ее можно применять при оформлении архитектурных чертежей или при нанесении текстовых логотипов произвольной формы на стенку спроектированной детали.
Неоценимую помощь конструктору при работе с КОМПАС-График окажет Библиотека для вставки выносных элементов. Она очень проста в использовании и позволяет быстро создавать и размещать на листе часть чертежа, охваченную выносным элементом, с учетом выбранного масштаба. Схожая с ней по назначению Библиотека для вставки выносных элементов, ограниченных сплайнами позволяет проделать то же самое, но только для выносного элемента, ограниченного не стандартным кружком, а произвольной замкнутой кривой, созданной пользователем.
Не менее полезной может быть небольшая утилита Размер для справок, которая позволяет добавить символ
* после размерных надписей для группы выделенных размеров, вследствие чего вам не придется редактировать каждый размер отдельно. Значительно сэкономить время при оформлении чертежей помогут утилиты Изменение высоты текста, с помощью которой можно за один раз изменить высоту шрифта для нескольких выделенных
текстовых объектов, и Выравнивание, позволяющая выравнивать по вертикали и горизонтали позиционные выноски с заданием определенного интервала.
Библиотека Сплайн по таблице дает возможность строить в чертежах и фрагментах сплайн (ломаную, кривую Безье или NURBS-кривую) по данным из таблицы, загруженной из файла формата XLS или TXT. Иногда набрать такую таблицу в редакторе Excel и потом сразу получить требуемую кривую, загрузив файл, бывает удобнее, чем вводить координаты каждой точки при создании сплайна вручную.
Одной из самых полезных библиотек, доступных для неограниченного использования, является модуль Test
Clos. Это совсем маленькая библиотека, которая ничего не рассчитывает и не строит, а просто находит в графических документах свободные концы объектов (отрезков, дуг, NURBS, кривых Безье, ломаных) и ставит в них точки. Что тут такого, спросите вы? Вот и я так подумал сначала, а сейчас использую эту библиотечку чаще других. Представьте себе ситуацию, когда вы чертите сложнейший агрегат на формате А1 с большим количеством не ассоциативных разрезов, сечений, выносок и пр. и при попытке в одном из разрезов создать штриховку система или вообще ее не создает, или штрихует площадь раз в двадцать большую, чем вам нужно. Конечно, если ничего уже не помогает, эту проблему можно решить, задав вручную границы области штриховки, потратив на это много времени. Рассмотрим еще одну ситуацию. При попытке создать деталь с помощью операции по сечениям (или кинематической операции), КОМПАС упрямо отказывается что-нибудь делать и все время выдает сообщение о том, что все контуры должны быть замкнуты. Или при вызове операции выдавливания для определенного эскиза на панели инструментов доступны (активны) только те элементы интерфейса, которые предназначаются для создания тонкой стенки. Можно привести очень много таких примеров. Причина данных проблем проста: контур, который заштриховывается, или эскиз, по которому формируется геометрия 3D-модели, разомкнут. Хорошо еще, если этот контур состоит из четырех-пяти, максимум десяти дуг или отрезков и вы,
увеличивая масштаб до астрономического, сможете обнаружить точку разрыва. А если эскиз своей конфигурацией ни в чем не уступает какому-нибудь сборочному чертежу, как тогда найти концы разорванной кривой? Я думаю, нет необходимости продолжать объяснять, зачем нужна библиотека Test Clos.
Кроме описанных, на сайте вы можете найти еще большое количество разнобразных приложений для расчета состава сборки, центра масс, выполнения резьбовых отверстий, определения радиусов в моделях и т. п.
Примечание
Часть конструкторских библиотек с сайта технической поддержки создавались еще для более старых версий
КОМПАС (некоторые даже для версии КОМПАС 5.11). Естественно, что при попытке подключить их в более поздних версиях система сообщит об ошибке – некорректной структуре файла библиотеки. К сожалению, в таком случае ничего не поделаешь, так как библиотеки не коммерческие и появление их обновлений для каждой новой версии системы зависит только от желания их создателей. Если такого желания у них нет, приходится довольствоваться тем, что есть.
Хочу остановиться подробнее на двух достаточно больших проектах, которые выложены на сайте «АСКОН» и которые написал я. Эти программы, кроме своего значительного практического значения (особенно для студентов), весьма органично вписываются в тему данной книги, поскольку они автоматизируют построение сборочного чертежа или трехмерной модели одноступенчатых редукторов различных типов.
Редуктор-2D V1.7
Проект Редуктор-2D (рис. 5.22) предназначен для проектного расчета приводов машин, состоящих из двигателя, муфты, передачи гибкой связью и одноступенчатого редуктора, и построения в КОМПАС-График чертежа общего вида редуктора, который входит в рассчитанный привод. Программа позволяет рассчитывать 35 различных схем приводов, которые представляют собой всевозможные комбинации передач гибкой связью

(ременной, клиноременной или цепной) с одноступенчатым редуктором (цилиндрическим, коническим или червячным).
Рис. 5.22.
Главное окно программы Редуктор-2D V1.7

Проект состоит из двух частей: расчетной – исполняемый файл REDUCTOR.exe и графической, выполненной в виде подключаемой библиотеки к системе КОМПАС, – файл REDUCTOR.rtw.
Примечание
Дистрибутив этого проекта находится на прилагаемом к книге компакт-диске в папке Programs\Редуктор 2D
V1.7 (rus). После подключения библиотеки REDUCTOR.rtw к КОМПАС вы можете свободно использовать этот проект в своих целях.
В расчетной части выполняется кинематический и силовой расчет всего привода, проектный расчет выбранной передачи гибкой связью, проектный расчет передачи зацеплением (редуктора), расчет валов и подбор подшипников. Для этого нужно запустить файл REDUCTOR.exe. Сам расчет практически полностью автоматизирован, проектировщик при необходимости может лишь подкорректировать некоторые параметры.
Детальное описание, как работать с этой частью проекта, приведено в небольших справках, которые доступны в каждом расчетном разделе. Каждый раздел расчета представлен вкладкой (рис. 5.23): первая вкладка – это кинематический и силовой расчет привода, последняя – расчет валов и подшипников, промежуточные две – расчет механических передач, входящих в привод. Результирующие данные расчетов каждой предыдущей вкладки являются исходными данными для расчетов следующей, из чего следует, что вкладки отображают схему привода.

Рис. 5.23.
Вкладка, на которой производится расчет цилиндрической зубчатой передачи

После завершения проектного расчета привода можно переходить к графической части проекта
(обязательным условием завершения считается выполнение расчета валов, то есть вам необходимо заполнить все вкладки расчетной части). Для этого сначала следует подключить библиотеку REDUCTOR.rtw к КОМПАС. В окне менеджера библиотек выполните команду контекстного меню Добавить описание → прикладной библиотеки, в открывшемся окне выберите файл библиотеки (REDUCTOR.rtw). В появившемся диалоге Свойства библиотеки вы можете задать имя, которое будет отображено в окне менеджера библиотек, а также выбрать режим открытия
(запуска) библиотеки. После подключения библиотека появится в окне менеджера и будет готова к работе.
Примечание
Для данной прикладной библиотеки размещение самого файла REDUCTOR.rtw не имеет значения.
После запуска библиотеки, если окно расчетной части проекта (REDUCTOR.exe) не было закрыто, в окно графической библиотеки будет автоматически загружен редуктор, который был только что спроектирован в расчетной части (рис. 5.24). В противном случае вам придется или заново произвести расчет всего привода, или загрузить данные о рассчитанном приводе, если они, конечно, были сохранены из расчетной части.
1   ...   36   37   38   39   40   41   42   43   ...   47


написать администратору сайта