Главная страница
Навигация по странице:

  • «МЕТОДЫ И ТЕХНИЧЕСКИЕ СРЕДСТВА ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ИНФОРМАЦИИ» Выполнила

  • В чем со­сто­ит про­бле­ма ау­тен­ти­фи­ка­ции дан­ных

  • спец техника. тема 44. Методы и технические средства обеспечения безопасности информации


    Скачать 51.21 Kb.
    НазваниеМетоды и технические средства обеспечения безопасности информации
    Анкорспец техника
    Дата27.11.2022
    Размер51.21 Kb.
    Формат файлаdocx
    Имя файлатема 44.docx
    ТипРеферат
    #814369

    МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

    Федеральное государственное бюджетное

    образовательное учреждение

    высшего образования

    ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

    Институт непрерывного образования

    Многопрофильный колледж

    «МЕТОДЫ И ТЕХНИЧЕСКИЕ СРЕДСТВА ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ИНФОРМАЦИИ»

    Выполнила:

    студентка 3-го курса группы 20КД3

    Сокова Т. А.

    Пенза, 2022

    СОДЕРЖАНИЕ


    ВВЕДЕНИЕ 3


    ВВЕДЕНИЕ
    Специальная техника – система технических средств, устройств и соответствующих тактико-технических приемов, используемых ОВД при условии соблюдения законности в целях обеспечения охраны общественного порядка и борьбы с преступностью.

    Проблема защиты информации: надежное обеспечение ее сохранности и установление статуса использования – является одной из важнейших проблем современности.

    Еще 25-30 лет назад задача защиты информации могла быть эффективно решена с помощью организационных мер и отдельных программно - аппаратах средств разграничения доступа и шифрования. Появление персональных ЭВМ, локальных и глобальных сетей, спутниковых каналов связи, эффективных технической разведки и конфиденциальной информации существенно обострило проблему защиты информации.


    1 ПОНЯТИЕ ИНФОРМАЦИИ




    Под информацией, применительно к задаче ее защиты понимается сведения о лицах, предметах, фактах, событиях явлениях и процессах независимо от формы их представления. В зависимости от формы представления информация может быть речевой, телекоммуникационной, документированной.

    Информационные процессы – процессы сбора, накопления, обработки хранения, распределения и поиска информации.

    Информационная система- совокупность документов и массивов документов и информационных технологий.

    Информационными ресурсами называют документы или массив документов существующие отдельно или в составе информационной системы.

    Процесс создания оптимальных условий для удовлетворения информационных потребностей граждан, организаций, общества и государства называется информатизацией.

    К защищаемой относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями, выдвигаемыми собственником информации.

    Под утечкой информации понимают неконтролируемое распространение защищенной информациипутем ее разглашения, несанкционированного доступа и получение разведчиками. Несанкционированный доступ – получение защищенной информации заинтересованным субъектом с нарушением правилом доступа к ней.

    2 СРЕДСТВА ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ИНФОРМАЦИИ




    К аппаратным средствам защиты информации относятся электронные и электронно-механические устройства, включаемые в состав КС и выполняющие (как самостоятельно, так и при помощи программных средств) некоторые функции по обеспечению безопасности информации.

    К основным аппаратным средствам защиты информации относятся:

    • Устройства ввода идентифицирующий пользователя информации;

    • Устройства шифрования информации;

    • Устройства для воспрепятствования несанкционированному включению рабочих станций серверов.

    Под программными средствами информационной безопасности понимают специальные программные средства, включаемые в состав программного обеспечения КС исключительно для выполнения защитах функций.

    К основным программным средствам защиты информации относятся:

    • Программы идентификации аутентификации пользователей КС;

    • Программы разграничения доступа пользователе к ресурсам КС;

    • Программы от несанкционированного доступа, копирования изменения и использования.

    Под идентификацией пользователя, применительно к обеспечению безопасности КС, однозначное распознание уникального имени субъекта КС. Аутентификация означает подтверждение того, что предъявленное имя соответствует именно данному субъекту.

    К преимуществам программных средств защиты информации относятся:

    • простота тиражирования

    • Гибкость (возможность настройки на различные условия применения)

    • Простота применения

    • Практически неограниченные возможности их развития

    • К недостаткам программных средств относятся:

    • снижение эффективности КС за счет потребления ее ресурсов, требуемых для функционирования программ защиты.

    • Более низкая производительность по сравнению с аналогичными функциями защиты аппаратными средствами

    • Пристыкованность многих программных средств (а не встроенность в средства КС)

    Основные требования к комплексной системе защиты информации

    • Разработка на основе положений и требований существующих законов, стандартов и нормативно - методических документов по обеспечению информационной безопасности;

    • Использование комплекса программно-технических средств и организационных мер по защите КС;

    • Надежность, конфигурируемость, производительность;

    • Экономическая целесообразность;

    • Выполнение на всех этапах жизни обработки информации в КС

    • Возможность совершенствования

    • Обеспечения разграничения доступа к конфиденциальной информации и отвлечение нарушителя на ложную информацию;

    • Взаимодействие с незащищенными КС по установленным для этого правилами разграничения доступа;

    • Обеспечение провидения учета и расследования случаев нарушения безопасности;

    • не должна вызывать у пользователя психологического противодействия и стремление обойтись без ее средств;

    • возможность оценки эффективности ее применения


    3 МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ




    3.1 Криптографические методы



    Про­бле­ма за­щи­ты ин­фор­ма­ции пу­тем ее пре­об­ра­зо­ва­ния, исключающего ее про­чте­ние по­сто­рон­ним ли­цом вол­но­ва­ла че­ло­ве­че­ский ум с дав­них вре­мен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древ­него Егип­та, Древ­ней Индии тому примеры.

    С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.

    Бурное раз­ви­тие крип­то­гра­фи­че­ские сис­те­мы по­лу­чи­ли в го­ды пер­вой и вто­рой ми­ро­вых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.

    По­че­му про­бле­ма ис­поль­зо­ва­ния крип­то­гра­фи­че­ских ме­то­дов в информационных системах (ИС) ста­ла в на­стоя­щий мо­мент осо­бо ак­ту­аль­на?

    С од­ной сто­ро­ны, рас­ши­ри­лось ис­поль­зо­ва­ние ком­пь­ю­тер­ных се­тей, в частности глобальной сети Интернет, по ко­то­рым пе­ре­да­ют­ся боль­шие объ­е­мы ин­фор­ма­ции го­су­дар­ст­вен­но­го, во­ен­но­го, ком­мер­че­ско­го и ча­ст­но­го ха­рак­те­ра, не до­пус­каю­ще­го воз­мож­ность дос­ту­па к ней по­сто­рон­них лиц.

    С дру­гой сто­ро­ны, по­яв­ле­ние но­вых мощ­ных ком­пь­ю­те­ров, тех­но­ло­гий се­те­вых и ней­рон­ных вы­чис­ле­ний сде­ла­ло воз­мож­ным дис­кре­ди­та­цию криптографических сис­тем еще не­дав­но счи­тав­ших­ся прак­ти­че­ски не раскрываемыми.

    Про­бле­мой защиты информации путем ее преобразования за­ни­ма­ет­ся крип­то­ло­гия (kryptos - тай­ный, logos - нау­ка). Криптология раз­де­ля­ет­ся на два на­прав­ле­ния - крип­то­гра­фию и крип­тоа­на­лиз. Це­ли этих на­прав­ле­ний прямо про­ти­во­по­лож­ны.

    Крип­то­гра­фия за­ни­ма­ет­ся по­ис­ком и ис­сле­до­ва­ни­ем ма­те­ма­ти­че­ских ме­то­дов пре­об­ра­зо­ва­ния ин­фор­ма­ции.

    Сфе­ра ин­те­ре­сов криптоанализа - ис­сле­до­ва­ние воз­мож­но­сти рас­шиф­ро­вы­ва­ния ин­фор­ма­ции без зна­ния клю­чей.

    Современная криптография включает в себя четыре крупных раздела:

    • Симметричные криптосистемы.

    • Криптосистемы с открытым ключом.

    • Системы электронной подписи.

    • Управление ключами.

    Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хра­не­ние ин­фор­ма­ции (до­ку­мен­тов, баз данных) на но­си­те­лях в за­шиф­ро­ван­ном ви­де.

    3.2 Системы с открытым ключом



    Как бы ни бы­ли слож­ны и на­деж­ны крип­то­гра­фи­че­ские сис­те­мы - их сла­бое ме­ст при прак­ти­че­ской реа­ли­за­ции - про­блема рас­пре­де­ле­ния клю­чей. Для то­го, что­бы был воз­мо­жен об­мен кон­фи­ден­ци­аль­ной ин­фор­ма­ци­ей ме­ж­ду дву­мя субъ­ек­та­ми ИС, ключ дол­жен быть сге­не­ри­ро­ван од­ним из них, а за­тем ка­ким-то об­ра­зом опять же в кон­фи­ден­ци­аль­ном по­ряд­ке пе­ре­дан дру­го­му. Т.е. в об­щем слу­чае для пе­ре­да­чи клю­ча опять же тре­бу­ет­ся ис­поль­зо­ва­ние ка­кой-то крип­то­си­сте­мы.

    Для ре­ше­ния этой про­бле­мы на ос­но­ве ре­зуль­та­тов, по­лу­чен­ных классической и со­вре­мен­ной ал­геб­рой, бы­ли пред­ло­же­ны сис­те­мы с от­кры­тым клю­чом.

    Суть их со­сто­ит в том, что ка­ж­дым ад­ре­са­том ИС ге­не­ри­ру­ют­ся два клю­ча, свя­зан­ные ме­ж­ду со­бой по оп­ре­де­лен­но­му пра­ви­лу. Один ключ объ­яв­ля­ет­ся от­кры­тым, а дру­гой за­кры­тым. От­кры­тый ключ пуб­ли­ку­ет­ся и дос­ту­пен лю­бо­му, кто же­ла­ет по­слать со­об­ще­ние ад­ре­са­ту. Секретный ключ сохраняется в тайне.

    Ис­ход­ный текст шиф­ру­ет­ся от­кры­тым клю­чом адресата и пе­ре­да­ет­ся ему. За­шиф­ро­ван­ный текст в прин­ци­пе не мо­жет быть рас­шиф­ро­ван тем же от­кры­тым клю­чом. Де­шиф­ро­ва­ние со­об­ще­ние воз­мож­но толь­ко с ис­поль­зо­ва­ни­ем за­кры­то­го клю­ча, ко­то­рый из­вес­тен толь­ко са­мо­му ад­ре­са­ту.

    Мно­же­ст­во клас­сов не­об­ра­ти­мых функ­ций и по­ро­ж­да­ет все раз­но­об­ра­зие сис­тем с от­кры­тым клю­чом. Од­на­ко не вся­кая не­об­ра­ти­мая функ­ция го­дит­ся для ис­поль­зо­ва­ния в ре­аль­ных ИС.

    В са­мом оп­ре­де­ле­нии не­об­ра­ти­мо­сти при­сут­ст­ву­ет не­оп­ре­де­лен­ность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение используя современные вычислительные средства за обозримый интервал времени.

    По­это­му что­бы га­ран­ти­ро­вать на­деж­ную за­щи­ту ин­фор­ма­ции, к сис­те­мам с от­кры­тым клю­чом (СОК) предъ­яв­ля­ют­ся два важ­ных и оче­вид­ных тре­бо­ва­ния:

    1. Пре­об­ра­зо­ва­ние ис­ход­но­го тек­ста долж­но быть не­об­ра­ти­мым и ис­клю­чать его вос­ста­нов­ле­ние на ос­но­ве от­кры­то­го клю­ча.

    2. Оп­ре­де­ле­ние за­кры­то­го клю­ча на ос­но­ве от­кры­то­го так­же долж­но быть не­воз­мож­ным на со­вре­мен­ном тех­но­ло­ги­че­ском уров­не. При этом же­ла­тель­на точ­ная ниж­няя оцен­ка сложности (ко­ли­че­ст­ва опе­ра­ций) рас­кры­тия шиф­ра.

    Ал­го­рит­мы шиф­ро­ва­ния с от­кры­тым клю­чом по­лу­чи­ли ши­ро­кое рас­про­стра­не­ние в со­вре­мен­ных ин­фор­ма­ци­он­ных сис­те­мах. Так, ал­го­ритм RSA стал ми­ро­вым стан­дар­том де-фак­то для от­кры­тых сис­тем и ре­ко­мен­до­ван МККТТ.

    Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:

    1. Разложение больших чисел на простые множители.

    2. Вычисление логарифма в конечном поле.

    1. Вычисление корней алгебраических уравнений.

    Здесь же сле­ду­ет от­ме­тить, что ал­го­рит­мы криптосистемы с открытым ключом (СОК) мож­но ис­поль­зо­вать в трех на­зна­че­ни­ях.

    1. Как са­мо­стоя­тель­ные сред­ст­ва за­щи­ты пе­ре­да­вае­мых и хра­ни­мых дан­ных.

    2. Как сред­ст­ва для рас­пре­де­ле­ния клю­чей. Ал­го­рит­мы СОК бо­лее тру­до­ем­ки, чем тра­ди­ци­он­ные крип­то­си­сте­мы. По­это­му час­то на прак­ти­ке ра­цио­наль­но с по­мо­щью СОК рас­пре­де­лять клю­чи, объ­ем ко­то­рых как ин­фор­ма­ции не­зна­чи­те­лен. А по­том с по­мо­щью обыч­ных ал­го­рит­мов осу­ще­ст­в­лять об­мен боль­ши­ми ин­фор­ма­ци­он­ны­ми по­то­ка­ми.

    3. Сред­ст­ва ау­тен­ти­фи­ка­ции поль­зо­ва­те­лей.

    3.3 Электронная подпись



    В 1991 г. Национальный институт стандартов и технологии (NIST) предложил для появившегося тогда алгоритма цифровой подписи DSA (Digital Signature Algorithm) стандарт DSS (Digital Signature Standard), в основу которого положены алгоритмы Эль-Гамаля и RSA.


    В чем со­сто­ит про­бле­ма ау­тен­ти­фи­ка­ции дан­ных?

    В кон­це обыч­но­го пись­ма или до­ку­мен­та ис­пол­ни­тель или от­вет­ст­вен­ное ли­цо обыч­но ста­вит свою под­пись. По­доб­ное дей­ст­вие обыч­но пре­сле­ду­ет две це­ли. Во-пер­вых, по­лу­ча­тель име­ет воз­мож­ность убе­дить­ся в ис­тин­но­сти пись­ма, сли­чив под­пись с имею­щим­ся у не­го об­раз­цом. Во-вто­рых, лич­ная под­пись яв­ля­ет­ся юри­ди­че­ским га­ран­том ав­тор­ст­ва до­ку­мен­та. По­след­ний ас­пект осо­бен­но ва­жен при за­клю­че­нии раз­но­го ро­да тор­го­вых сде­лок, со­став­ле­нии до­ве­рен­но­стей, обя­за­тельств и т.д.

    Ес­ли под­де­лать под­пись че­ло­ве­ка на бу­ма­ге весь­ма не­про­сто, а ус­та­но­вить ав­тор­ст­во под­пи­си со­вре­мен­ны­ми кри­ми­на­ли­сти­че­ски­ми ме­то­да­ми - тех­ни­че­ская де­таль, то с под­пи­сью элек­трон­ной де­ло об­сто­ит ина­че. Под­де­лать це­поч­ку би­тов, про­сто ее ско­пи­ро­вав, или не­за­мет­но вне­сти не­ле­галь­ные ис­прав­ле­ния в до­ку­мент смо­жет лю­бой поль­зо­ва­тель.

    С ши­ро­ким рас­про­стра­не­ни­ем в со­вре­мен­ном ми­ре элек­трон­ных форм до­ку­мен­тов (в том чис­ле и кон­фи­ден­ци­аль­ных) и средств их об­ра­бот­ки осо­бо ак­ту­аль­ной ста­ла про­бле­ма ус­та­нов­ле­ния под­лин­но­сти и ав­тор­ст­ва без­бу­маж­ной до­ку­мен­та­ции.

    В раз­де­ле крип­то­гра­фи­че­ских сис­тем с от­кры­тым клю­чом бы­ло по­ка­за­но, что при всех пре­иму­ще­ст­вах со­вре­мен­ных сис­тем шиф­ро­ва­ния они не по­зво­ля­ют обес­пе­чить ау­тен­ти­фи­ка­цию дан­ных. По­это­му сред­ст­ва ау­тен­ти­фи­ка­ции долж­ны ис­поль­зо­вать­ся в ком­плек­се и крип­то­гра­фи­че­ски­ми ал­го­рит­ма­ми.

    Иногда нет необходимости зашифровывать передаваемое сообщение, но нужно его скрепить электронной подписью. В этом случае текст шифруется закрытым ключом отправителя, и полученная цепочка символов прикрепляется к документу. Получатель с помощью открытого ключа отправителя расшифровывает подпись и сверяет ее с текстом. В 1991 г. Национальный институт стандартов и технологии (NIST) предложил для появившегося тогда алгоритма цифровой подписи DSA (Digital Signature Algorithm) стандарт DSS (Digital Signature Standard), в основу которого положены алгоритмы Эль-Гамаля и RSA.

    3.4 Методы защиты информации в Internet



    Сегодня самая актуальная для Internet тема - проблема защиты информации. Сеть стремительно развивается в глобальных масштабах, и все большее распространение получают системы внутренних сетей (intranet, интрасети). Появление на рынке новой огромной ниши послужило стимулом как для пользователей, так и для поставщиков сетевых услуг к поиску путей повышения безопасности передачи информации через Internet.

    Проблема безопасности в Internet подразделяется на две категории: общая безопасность и вопросы надежности финансовых операций. Успешное разрешение проблем в сфере финансовой деятельности могло бы открыть перед Internet необозримые перспективы по предоставлению услуг для бизнеса. В борьбу за решение этой проблемы включились такие гиганты в области использовани кредитных карточек, как MasterCard и Visa, а также лидеры компьютерной индустрии Microsoft и Netscape. Все это касается "денежных" дел; наша же статья посвящена проблеме общей безопасности.

    Задача исследований в этой области - решение проблемы конфиденциальности. Рассмотрим для примера передачу сообщений электронной почты с одного SMTP-сервера на другой. В отдельных случаях эти сообщения просто переписываются с одного жесткого диска на другой как обыкновенные текстовые файлы, т. е. прочитать их смогут все желающие. Образно говоря, механизм доставки электронной почты через Internet напоминает ситуацию, когда постиранное белье вывешивается на улицу, вместо того чтобы отжать его в стиральной машине. Не важно, содержатся ли в послании какая-то финансовая информация или нет; важно следующее - любая пересылаемая по Internet информаци должна быть недоступна для посторонних.

    Кроме конфиденциальности пользователей также волнует вопрос гарантий, с кем они сейчас "беседуют". Им необходима уверенность, что сервер Internet, с которым у них сейчас сеанс связи, действительно является тем, за кого себя выдает; будь то сервер World-Wide Web, FTP, IRC или любой другой.

    4 ОЦЕНКА ЭФФЕКТИВНОСТИ СИСТЕМ ЗАЩИТЫ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ




    Системы защиты ПО широко распространены и находятся в постоянном развитии, благодаря расширению рынка ПО и телекоммуникационных технологий. Необходимость использования систем защиты (СЗ) ПО обусловлена рядом проблем, среди которых следует выделить: незаконное использование алгоритмов, являющихся интеллектуальной собственностью автора, при написании аналогов продукта (промышленный шпионаж); несанкционированное использование ПО (кража и копирование); несанкционированная модификация ПО с целью внедрения программных злоупотреблений; незаконное распространение, и сбыт ПО (пиратство).

    Системы защиты ПО по методу установки можно подразделить на системы, устанавливаемые на скомпилированные модули ПО; системы, встраиваемые в исходный код ПО до компиляции; и комбинированные.

    Системы первого типа наиболее удобны для производителя ПО, так как легко можно защитить уже полностью готовое и оттестированное ПО (обычно процесс установки защиты максимально автоматизирован и сводится к указанию имени защищаемого файла и нажатию "Enter"), а потому и наиболее популярны. В то же время стойкость этих систем достаточно низка (в зависимости от принципа действия СЗ), так как для обхода защиты достаточно определить точку завершения работы "конверта" защиты и передачи управления защищенной программе, а затем принудительно ее сохранить в незащищенном виде.

    Системы второго типа неудобны для производителя П.О, так как возникает необходимость обучать персонал работе с программным интерфейсом (API) системы защиты с вытекающими отсюда денежными и временными затратами. Кроме того, усложняется процесс тестирования П.О и снижается его надежность, так как кроме самого ПО ошибки может содержать API системы защиты или процедуры, его использующие. Но такие системы являются более стойкими к атакам, потому что здесь исчезает четкая граница между системой защиты и как таковым П.О.

    Для защиты ПО используется ряд методов, таких как:

    • Алгоритмы запутывания – используются хаотические переходы в разные части кода, внедрение ложных процедур - "пустышек", холостые циклы, искажение количества реальных параметров процедур ПО, разброс участков кода по разным областям ОЗУ и т.п.

    • Алгоритмы мутации - создаются таблицы соответствия операндов - синонимов и замена их друг на друга при каждом запуске программы по определенной схеме или случайным образом, случайные изменения структуры программы.

    • Алгоритмы компрессии данных - программа упаковывается, а затем распаковывается по мере выполнения.

    • Алгоритмы шифрования данных - программа шифруется, а затем расшифровывается по мере выполнения.

    • Вычисление сложных математических выражений в процессе отработки механизма защиты - элементы логики защиты зависят от результата вычисления значения какой-либо формулы или группы формул.

    • Методы затруднения дизассемблирования - используются различные приемы, направленные на предотвращение дизассемблирования в пакетном режиме.

    • Методы затруднения отладки - используются различные приемы, направленные на усложнение отладки программы.

    • Эмуляция процессоров и операционных систем - создается виртуальный процессор и/или операционная система (не обязательно реально существующие) и программа-переводчик из системы команд IBM в систему команд созданного процессора или ОС, после такого перевода ПО может выполняться только при помощи эмулятора, что резко затрудняет исследование алгоритма ПО.

    • Нестандартные методы работы с аппаратным обеспечением – модули системы защиты обращаются к аппаратуре ЭВМ, минуя процедуры операционной системы, и используют малоизвестные или недокументированные её возможности.


    ЗАКЛЮЧЕНИЕ



    В данной работе мы рассмотрели характеристики, назначение, методов и технических средств обеспечения безопасности информации.

    Информация давно перестала быть просто необходимым для производства вспомогательным ресурсом или побочным проявлением всякого рода деятельности. Она приобрела ощутимый стоимостный вес, который четко определяется реальной прибылью, получаемой при ее использовании, или размерами ущерба, с разной степенью вероятности наносимого владельцу информации. Создание индустрии переработки информации порождает целый ряд сложных проблем. Одной из таких проблем является надежное обеспечение сохранности и установленного статуса информации, циркулирующей и обрабатываемой в информационно-вычислительных системах и сетях.

    Можно сказать, что не существует одного абсолютно надежного метода защиты. Наиболее полную безопасность можно обеспечить только при комплексном подходе к этому вопросу. Необходимо постоянно следить за новыми решениями в этой области. В крупных организациях я бы рекомендовала ввести должность специалиста по информационной безопасности.

    К преимуществам программных средств защиты информации относятся:

    • простота тиражирования

    • Гибкость (возможность настройки на различные условия применения)

    • Простота применения

    • Практически неограниченные возможности их развития

    К недостаткам программных средств относятся:

    • снижение эффективности КС за счет потребления ее ресурсов, требуемых для функционирования программ защиты.

    • Более низкая производительность по сравнению с аналогичными функциями защиты аппаратными средствами

    • Пристыкованность многих программных средств (а не встроенность в средства КС)

    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ





    1. Гадасин В.А., Конявский В.А. От документа – к электронному

    документу. Системные основы. – М.: РФК-Имидж Лаб, 2004. - 220с.

    1. Баричев С. «Криптография без секретов». - СПб.: Питер, 2002.- 360с.

    2. С. Середа "Программно-аппаратные системы защиты программного

    обеспечения", 2003.-164 с.

    1. Хореев П.В. «Методы и средства защиты информации в компьютерных

    системах» 2005 год, издательский центр «Академия»; ПрофОбрИздат, 2001.-267 с.


    написать администратору сайта