ЛПР 10. Методы одномерной оптимизации
Скачать 2 Mb.
|
ТИПОВЫЕ ЗАДАЧИ Задача 1. Определить отрезок, содержащий точку максимума функции ; ; . Решение. ; ; . Поскольку , , . Далее , , . , . , . . Задача 2. Найти точку максимума функции на отрезке методом дихотомическиого поиска. ; . Решение. Итерация 1. , ; ; ; ; , ; . Итерация 2. , ; ; ; ; , ; . Итерация 3. , ; ; ; ; , . Итерация 4. ; . Задача 3. Найти точку максимума функции на отрезке методом золотого сечения, . Решение. ; ; . . . ; . Итерация 1. Так как , то ; . ; ; ; ; . Итерация 2. Так как , то ; . ; ; ; ; . Итерация 3. Так как , то ; . ; ; ; ; . Итерация 4. Так как , то ; . ; ; ; ; , следовательно, . Задача 4. Найти точку максимума функции на отрезке методом средней точки, . Решение. . Итерация 1. ; ; . Итерация 2. ; ; . Итерация 3. ; ; . Итерация 4. ; ; . Итерация 5. ; ; . Итерация 6. ; ; . Итерация 7. ; ; , . Задача 5. Найти точку максимума функции на отрезке методом Ньютона-Рафсона, ; . Решение. Итерация 1. ; ; ; Итерация 2. ; ; Построение графика функции при помощи табличного процессора Microsoft Excel. Пример 1. Дана функция и отрезок . Вычислить значения этой функции на заданном отрезке с шагом h. Построить график этой функции на заданном отрезке. Пусть ; ; ; . Решение Первый этап 1. Открываем новый рабочий лист. 2. Заносим в ячейки А1 и В1 название столбцов - и . 3. Заносим в ячейки D1, D2 – начальное значение интервала, т.е. точку , в ячейки Е1, Е2 – конечное значение интервала, т.е. точку , в ячейки F1, F2 – значение шага табуляции, т.е. . 4. В ячейку А2 вводим формулу , т.е в ячейку А2 помещаем начальное значение интервала, стоящее в ячейке D2 (абсолютная ссылка ставится нажатием клавиши F4). 5. В ячейку А3 вводим формулу изменения аргумента функции на шаг табуляции , т.е. формулу . 6. Подводим курсор в правый нижний угол ячейки А3 до появления маленького черного крестика и протяжкой мыши распространяем полученную формулу до ячейки A202, т.е. до получения значения . 7. В ячейку В2 вводим формулу вычисления значения функции в точке , значение которого находится в ячейке А2. 8. Подводим курсор в правый нижний угол ячейки В2 до появления маленького черного крестика и протяжкой мыши распространяем полученную формулу до ячейки В202, т.е. до получения значения функции в точке . 9. Таким образом, получаем следующую таблицу: . 10. Выделяем ячейки А2:А202 и вызываем Мастер диаграмм кнопкой . Выбираем тип диаграммы – График, вид – График с маркерами, помечающими точки данных, и нажимаем по кнопке Далее (рис. 1). 11. Устанавливаем Диапазон данных, расположение рядов в столбцах (рис. 2), и нажимаем по кнопке Далее. 12. На третьем шаге построения графика функции вводим Название диаграммы, названия осей x и y (рис. 3). 1 Рис. 1. 3. Указываем расположение диаграммы – На имеющимся листе. 1 Рис. 2. Рис. 3. 4. В результате получает график исходной функции (рис. 4). Рис. 4. |