Главная страница
Навигация по странице:

  • ВП как единица психофизиологического анализа.

  • 1.3. Топографическое картирование электрической активности мозга (ТКЭАМ)

  • Способы представления данных.

  • 1.4. Компьютерная томография (КТ)

  • Ядерно-магнитно-резонансная томография мозга.

  • 1.5. Нейрональная активность Нейрон

  • Регистрация ответов нейронов.

  • Приложение к ПЗ 1.Методы психофизиологии. Методы психофизиологии


    Скачать 309.23 Kb.
    НазваниеМетоды психофизиологии
    Дата29.10.2021
    Размер309.23 Kb.
    Формат файлаdocx
    Имя файлаПриложение к ПЗ 1.Методы психофизиологии.docx
    ТипДокументы
    #259217
    страница2 из 4
    1   2   3   4

    1.2. Вызванные потенциалы головного мозга

    Вызванные потенциалы (ВП) — биоэлектрические колебания, возникающие в нервных структурах в ответ на внешнее раздражение и находящиеся в строго определенной временной связи с началом его действия. У человека ВП обычно включены в ЭЭГ, но на фоне спонтанной биоэлектрической активности трудно различимы (амплитуда одиночных ответов в несколько раз меньше амплитуды фоновой ЭЭГ). В связи с этим регистрация ВП осуществляется специальными техническими устройствами, которые позволяют выделять полезный сигнал из шума путем последовательного его накопления, или суммации. При этом суммируется некоторое число отрезков ЭЭГ, приуроченных к началу действия раздражителя.




    Схематизированные эндогенные компоненты слуховых вызванных потенциалов (B. Rockstroh et al., 1982):
    а - в ответ на релевантные задаче стимулы; б - ответ на иррелевантный стимул

    Широкое использование метода регистрации ВП стало возможным в результате компьютеризации психофизиологических исследований в 50-60 гг. Первоначально его применение в основном было связано с изучением сенсорных функций человека в норме и при разных видах аномалий. Впоследствии метод стал успешно применяться и для исследования более сложных психических процессов, которые не являются непосредственной реакцией на внешний стимул.

              Способы выделения сигнала из шума позволяют отмечать в записи ЭЭГ изменения потенциала, которые достаточно строго связаны во времени с любым фиксированным событием. В связи с этим появилось новое обозначение этого круга физиологических явлений — событийно-связанные потенциалы (ССП).

    • Примерами здесь служат:

      • колебания, связанные с активностью двигательной коры (моторный потенциал, или потенциал, связанный с движением);

      • потенциал, связанный с намерением произвести определенное действие (так называемая Е-волна);

      • потенциал, возникающий при пропуске ожидаемого стимула.

    Эти потенциалы представляют собой последовательность позитивных и негативных колебаний, регистрируемых, как правило, в интервале 0-500 мс. В ряде случаев возможны и более поздние колебания в интервале до 1000 мс. Количественные методы оценки ВП и ССП предусматривают, в первую очередь, оценку амплитуд и латентностей. Амплитуда — размах колебаний компонентов, измеряется в мкВ, латентность — время от начала стимуляции до пика компонента, измеряется в мс. Помимо этого, используются и более сложные варианты анализа.

    • В исследовании ВП и ССП можно выделить три уровня анализа:

      • феноменологический;

      • физиологический;

      • функциональный.

    Феноменологический уровень включает описание ВП как многокомпонентной реакции с анализом конфигурации, компонентного состава и топографических особенностей. Фактически этот уровень анализа, с которого начинается любое исследование, применяющее метод ВП. Возможности этого уровня анализа прямо связаны с совершенствованием способов количественной обработки ВП, которые включают разные приемы, начиная от оценки латентностей и амплитуд и кончая производными, искусственно сконструированными показателями. Многообразен и математический аппарат обработки ВП, включающий факторный, дисперсионный, таксономический и другие виды анализа.

              Физиологический уровень. По этим результатам на физиологическом уровне анализа происходит выделение источников генерации компонентов ВП, т.е. решается вопрос о том, в каких структурах мозга возникают отдельные компоненты ВП. Локализация источников генерации ВП позволяет установить роль отдельных корковых и подкорковых образований в происхождении тех или иных компонентов ВП. Наиболее признанным здесь является деление ВП на экзогенные и эндогенные компоненты. Первые отражают активность специфических проводящих путей и зон, вторые — неспецифических ассоциативных проводящих систем мозга. Длительность тех и других оценивается по-разному для разных модальностей. В зрительной системе, например, экзогенные компоненты ВП не превышают 100 мс от момента стимуляции.
              Третий уровень анализа — функциональный предполагает использование ВП как инструмента, позволяющего изучать физиологические механизмы поведения и познавательной деятельности человека и животных.

    ВП как единица психофизиологического анализа. Под единицей анализа принято понимать такой объект анализа, который в отличие от элементов обладает всеми основными свойствами, присущими целому, причем свойства являются далее неразложимыми частями этого единства. Единица анализа — это такое минимальное образование, в котором непосредственно представлены существенные связи и существенные для данной задачи параметры объекта. Более того, подобная единица сама должна быть единым целым, своего рода системой, дальнейшее разложение которой на элементы лишит ее возможности представлять целое как таковое. Обязательным признаком единицы анализа является также то, что ее можно операционализировать, т.е. она допускает измерение и количественную обработку.
              Если рассматривать психофизиологический анализ как метод изучения мозговых механизмов психической деятельности, то ВП отвечают большинству требований, которые могут быть предъявлены единице такого анализа.
              Во-первых, ВП следует квалифицировать как психонервную реакцию, т.е. такую, которая прямо связана с процессами психического отражения.
              Во-вторых, ВП — это реакция, состоящая из ряда компонентов, непрерывно связанных между собой. Таким образом, она структурно однородна и может быть операционализирована, т.е. имеет количественные характеристики в виде параметров отдельных компонентов (латентностей и амплитуд). Существенно, что эти параметры имеют разное функциональное значение в зависимости от особенностей экспериментальной модели.          В-третьих, разложение ВП на элементы (компоненты), осуществляемое как метод анализа, позволяет охарактеризовать лишь отдельные стадии процесса переработки информации, при этом утрачивается целостность процесса как такового.
              В наиболее выпуклой форме идеи о целостности и системности ВП как корреляте поведенческого акта нашли отражение в исследованиях В.Б. Швыркова. По этой логике ВП, занимая весь временной интервал между стимулом и реакцией, соответствуют всем процессам, приводящим к возникновению поведенческого ответа, при этом конфигурация ВП зависит от характера поведенческого акта и особенностей функциональной системы, обеспечивающей данную форму поведения. При этом отдельные компоненты ВП рассматриваются как отражение этапов афферентного синтеза, принятия решения, включения исполнительных механизмов, достижения полезного результата. В такой интерпретации ВП выступают как единица психофизиологического анализа поведения.
              Однако магистральное русло применения ВП в психофизиологии связано с изучением физиологических механизмов и коррелятов познавательной деятельности человека. Это направление определяется как когнитивная психофизиология. ВП в нем используются в качестве полноценной единицы психофизиологического анализа. Такое возможно, потому что, по образному определению одного из психофизиологов, ВП имеют уникальный в своем роде двойной статус, выступая в одно и то же время как "окно в мозг" и "окно в познавательные процессы" 

    1.3. Топографическое картирование электрической активности мозга (ТКЭАМ)

    Т КЭАМ — топографическое картирование электрической активности мозга — область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциалов (см. Видео). Широкое применение этого метода стало возможным при появлении относительно недорогих и быстродействующих персональных компьютеров. Топографическое картирование существенным образом повышает эффективность ЭЭГ-метода. ТКЭАМ позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психической деятельности. Однако, следует подчеркнуть, что метод картирования мозга является не более чем очень удобной формой представления на экране дисплея статистического анализа ЭЭГ и ВП.

    • Сам метод картирования мозга можно разложить на три основные составляющие:

      • регистрацию данных;

      • анализ данных;

      • представление данных.

    Регистрация данных. Используемое число электродов для регистрации ЭЭГ и ВП, как правило, варьирует в диапазоне от 16 до 32, однако в некоторых случаях достигает 128 и даже больше. При этом большее число электродов улучшает пространственное разрешение при регистрации электрических полей мозга, но сопряжено с преодолением больших технических трудностей.
              Для получения сравнимых результатов используется система "10-20", при этом применяется в основном монополярная регистрация.
              Важно, что при большом числе активных электродов можно использовать лишь один референтный электрод, т.е. тот электрод, относительно которого регистрируется ЭЭГ всех остальных точек постановки электродов. Местом приложения референтного электрода служат мочки ушей, переносица или некоторые точки на поверхности скальпа (затылок, вертекс). Существуют такие модификации этого метода, которые позволяют вообще не использовать референтный электрод, заменяя его значениями потенциала, вычисленными на компьютере.

    Анализ данных. Выделяют несколько основных способов количественного анализа ЭЭГ: временной, частотный и пространственный.
              Временный представляет собой вариант отражения данных ЭЭГ и ВП на графике, при этом время откладывается по горизонтальной оси, а амплитуда — по вертикальной. Временной анализ применяют для оценки суммарных потенциалов, пиков ВП, эпилептических разрядов.

              Частотный анализ заключается в группировке данных по частотным диапазонам: дельта, тета, альфа, бета.

              Пространственный анализ сопряжен с использованием различных статистических методов обработки при сопоставлении ЭЭГ из разных отведений. Наиболее часто применяемый способ — это вычисление когерентности.

    Способы представления данных. Самые современные компьютерные средства картирования мозга позволяют легко отражать на дисплее все этапы анализа: "сырые данные" ЭЭГ и ВП, спектры мощности, топографические карты — как статистические, так и динамические в виде мультфильмов, различные графики, диаграммы и таблицы, а также, по желанию исследователя, — различные комплексные представления. Следует особо указать на то, что применение разнообразных форм визуализации данных позволяет лучше понять особенности протекания сложных мозговых процессов.




    ЭЭГ-карты, представляющие топографическое расположение значений спектральной мощности ЭЭГ (по Н.Л. Горбачевской с соавт., 1991).
    Под каждой картой указан диапазон анализируемых частот. Справа - шкала значений спектральной мощности ЭЭГ, мкВ

    Топографические карты представляют собой контур черепа, на котором изображен какой-либо закодированный цветом параметр ЭЭГ в определенный момент времени, причем разные градации этого параметра (степень выраженности) представлены разными цветовыми оттенками. Поскольку параметры ЭЭГ постоянно меняются по ходу обследования, соответственно этому изменяется цветовая композиция на экране, позволяя визуально отслеживать динамику ЭЭГ процессов. Параллельно с наблюдением исследователь получает в свое распоряжение статистические данные, лежащие в основе карт.
              Использование ТКЭАМ в психофизиологии наиболее продуктивно при применении психологических проб, которые являются "топографически контрастными", т.е. адресуются к разным отделам мозга (например, вербальные и пространственные задания).
    1.4. Компьютерная томография (КТ)

    К омпьютерная томография (КТ) — новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. КТ соединила в себе последние достижения рентгеновской и вычислительной техники, отличаясь принципиальной новизной технических решений и математического обеспечения.
              Главное отличие КТ от рентгенографии состоит в том, что рентген дает только один вид части тела. При помощи компьютерной томографии можно получить множество изображений одного и того же органа и таким образом построить внутренний поперечный срез, или "ломтик" этой части тела. Томографическое изображение — это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу.
              Таким образом, метод позволяет различать ткани, незначительно отличающиеся между собой по поглощающей способности. Измеренные излучение и степень его ослабления получают цифровое выражение. По совокупности измерений каждого слоя проводится компьютерный синтез томограммы. Завершающий этап — построение изображения исследуемого слоя на экране дисплея. Для проведения томографических исследований мозга используется прибор нейротомограф.
              Помимо решения клинических задач (например, определения местоположения опухоли) с помощью КТ можно получить представление о распределении регионального мозгового кровотока. Благодаря этому КТ может быть использована для изучения обмена веществ и кровоснабжения мозга.
              В ходе жизнедеятельности нейроны потребляют различные химические вещества, которые можно пометить радиоактивными изотопами (например, глюкозу). При активизации нервных клеток кровоснабжение соответствующего участка мозга возрастает, в результате в нем скапливаются меченые вещества и возрастает радиоактивность. Измеряя уровень радиоактивности различных участков мозга, можно сделать выводы об изменениях активности мозга при разных видах психической деятельности. Последние исследования показали, что определение максимально активизированных участков мозга может осуществляться с точностью до 1 мм.

    Ядерно-магнитно-резонансная томография мозга. Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга.
              П ри ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физикохимического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях.
              Позитронно-Эмиссионная трансаксиальная Томография (ПЭТ-сканеры) сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". Излучения этого "красителя" преобразуют в изображения на дисплее.
              С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на "срезах" мозга регионального обмена веществ и кровотока.
              В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили название метода функционального магнитного резонанса (ФМР).
    1.5. Нейрональная активность

    Нейрон — нервная клетка, через которую передается информация в организме, представляет собой морфофункциональную единицу ЦНС человека и животных. При достижении порогового уровня возбуждения, поступающего в нейрон из разных источников, он генерирует разряд, называемый потенциалом действия. Как правило, нейрон должен получить много приходящих импульсов прежде, чем в нем возникнет ответный разряд. Все контакты нейрона (синапсы) делятся на два класса: возбудительные и тормозные. Активность первых увеличивает возможность разряда нейрона, активность вторых — снижает. По образному сравнению, ответ нейрона на активность всех его синапсов представляет собой результат своеобразного "химического голосования". Частота ответов нейрона зависит от того, как часто и с какой интенсивностью возбуждаются его синаптические контакты, но здесь есть свои ограничения. Генерация импульсов (спайков) делает нейрон недееспособным примерно на 0,001 с. Этот период называется рефрактерным, он нужен для восстановления ресурсов клетки. Период рефрактерности ограничивает частоту разрядов нейронов. Частота разрядов нейронов колеблется в широких пределах, по некоторым данным от 300 до 800 импульсов в секунду.



    Варианты осциллограмм импульсной активности нейронных популяций, регистрируемых в различных корковых и подкорковых структурах (по Н.П. Бехтеревой с соавт., 1985).
    Вверху - отметки времени (100 мс). Латинские буквы справа - условные обозначения структур мозга человека

    Регистрация ответов нейронов. Активность одиночного нейрона регистрируется с помощью так называемых микроэлектродов, кончик которых имеет от 0,1 до 1 микрона в диаметре. Специальные устройства позволяют вводить такие электроды в разные отделы головного мозга, в таком положении электроды можно зафиксировать и, будучи соединены с комплексом усилитель — осциллограф, они позволяют наблюдать электрические разрядынейрона.
              С помощью микроэлектродов регистрируют активность отдельных нейронов, небольших ансамблей (групп) нейронов и множественных популяций (т.е. сравнительно больших групп нейронов). Количественная обработка записей импульсной активности нейронов представляет собой довольно сложную задачу особенно в тех случаях, когда нейрон генерирует множество разрядов и нужно выявить изменения этой динамики в зависимости от каких-либо факторов. С помощью ЭВМ и специального программного обеспечения оцениваются такие параметры, как частота импульсации, частота ритмических пачек или группирования импульсов, длительность межстимульных интервалов и др. Анализ функциональных характеристик активности нейронов в сопоставлении с поведенческими реакциями проводится на достаточно длительных отрезках времени от 25-30 с и выше.           Активность нейронов регистрируют у животных в эксперименте, у человека в клинических условиях. Ценными объектами исследования функциональных свойств нейронов служат крупные и относительно доступные нейроны некоторых беспозвоночных. Многочисленные факты, касающиеся нейрональной организации поведения, были получены при изучении импульсной активности нейронов в экспериментах на кроликах, кошках и обезьянах.
              Исследования активности нейронов головного мозга человека осуществляются в клинических условиях, когда пациентам с лечебными целями вводят в мозг специальные микроэлектроды. В ходе лечения для полноты клинической картины больные проходят психологическое тестирование, в процессе которого регистрируется активность нейронов. Исследование биоэлектрических процессов в клетках, сохраняющих все свои связи в мозге, позволяет сопоставлять особенности их активности, с результатами психологических проб, с одной стороны, а также с интегративными физиологическими показателями (ЭЭГ, ВП, ЭМГ и др.)
              Последнее особенно важно, потому что одной из задач изучения работы мозга является нахождение такого метода, который позволил бы гармонически сочетать тончайший анализ в изучении деталей его работы с исследованием интегральных функций. Знание законов функционирования отдельных нейронов, конечно, совершенно необходимо, но это только одна сторона в изучении функционирования мозга, не вскрывающая, однако, законов работы мозга как целостной функциональной системы.
    1   2   3   4


    написать администратору сайта