Реферат. Методика и устройства для настройки станков с чпу для работы по программе
Скачать 23.49 Kb.
|
Реферат Тема: Методика и устройства для настройки станков с ЧПУ для работы по программе. Выполнил: Молоков.Н.Н 2022 год. Введение Появление в 50-х годах ХХ века станков с ЧПУ было обусловлено необходимостью повышения производительности труда (при одновременном обеспечение стабильного качества) на производствах с массовым и крупносерийным выпуском продукции, т.к. продолжение использования человека в качестве основного элемента системы управления станком стало сдерживать рост производительности оборудования. Последующий полувековой опыт применения станков с ЧПУ не только подтвердил правильность исходных идей, но и существенно дополнил и продолжает дополнять многочисленные преимущества этих станков по сравнению со станками с ручным управлением или механическими полуавтоматами и автоматами. Современное машиностроительное производство немыслимо без максимально широкого использования станков, оборудования, а так же обрабатывающих центров с ЧПУ. станок числовое программное управление Общие сведения Станок с ЧПУ (числовое программное управление) — оборудование, выполняющее различные технологические операции по заданной программе. Помимо металлорежущих (например, фрезерные или токарные), существует оборудование для резки листовых заготовок, для обработки давлением. Станки с ЧПУ являются сложными технологическими комплексами, включающими непосредственно станок и устройство ЧПУ, построенное часто с применением мини-ЭВМ, которые должны быть органически взаимосвязаны с учетом их особенностей и возможностей. Числовое программное управление означает компьютеризованную систему управления, считывающую инструкции специализированного языка программирования (например, G-код) и управляющую приводами метало- дерево- и пластмасообрабатывающих станков и станочной оснасткой. Интерпретатор системы ЧПУ производит перевод программы из входного языка в команды управления главным приводом, приводами подач, контроллерами управления узлов станка (включить/выключить охлаждение, например). Для определения необходимой траекторию движения рабочего органа в целом (инструмента/заготовки) в соответствии с управляющей программой (УП) используется интерполятор, рассчитывающий положение промежуточных точек траектории по заданным в программе конечным. Аббревиатура ЧПУ соответствует двум англоязычным NC и CNC, отражающим эволюцию развития систем управления оборудованием. Системы типа NC (см. NC) предусматривали использование жестко заданных схем управления обработкой, задание программы с помощью штекеров или переключателей, хранение программ на внешних носителях, таких, как магнитные ленты, перфорированные бумажные ленты. Каких-либо устройств оперативного хранения данных, управляющих микропроцессоров не предусматривалось. Системы ЧПУ, описываемые как CNC, основаны на микропроцессоре с оперативной памятью, с операционной системой, приводы управляются собственными микроконтроллерами. Программа для оборудования с ЧПУ может быть загружена с внешних носителей, например, дискет или с обычных или специализированных флеш-накопителей. Помимо этого, современное оборудование подключается к заводским сетям связи. Основной язык программирования ЧПУ описан документом ISO 6983 Международного комитета по стандартам. В отдельных случаях, например, системы управления гравировальными станками, язык управления принципиально отличается от стандарта. Для простых задач, например, раскрой плоских заготовок, система ЧПУ в качестве входной информации может использовать текстовый файл в формате обмена данными, например DXF или HP-GL. Преимущества станков с ЧПУ: · повышается производительность труда в 3—4 раза; · повышается точность обработки, сократить брак, объем пригоночных работ при сборке; · сокращается количество технологической оснастки; · сокращение числа контрольных операций, число контролеров и контрольных инструментов и приспособлений; · сокращается длительность производственного цикла обработки деталей и машин; · повышается гибкость и мобильность оборудования; · использование многостаночного обслуживания оборудования; Вместе с тем станки с ЧПУ имеют: · более высокую стоимость; · требуют дополнительных затрат на подготовку управляющих программ (УП); · удорожается обслуживание и ремонт оборудования. Системы ЧПУ можно классифицировать по различным признакам. В зависимости от способа управления исполнительным органом различают: · позиционные · контурные · универсальные системы. При позиционном управлении инструмент последовательно обходит ряд точек — позиций. Требуется высокая точность позиционирования, а траектория перемещения инструмента из одной позиции в другую не имеет существенного значения — это холостое перемещение. При контурном управлении инструмент движется без остановок, и обработка совершается во время движения. Все погрешности отработки траектории переносятся на деталь. В зависимости от наличия обратной связи системы управления могут быть: · замкнутыми · закрытыми · разомкнутыми · открытыми. В зависимости от способа отсчета перемещения различают системы управления с абсолютным и относительным отсчетом. В первом случае отсчет ведется относительно начала системы координат: x1, y1, x2, y2 и т. д., во втором случае задаются приращения: Δx1, Δy1, Δx2, Δy2 и т. д. В зависимости от чисел управляемых координат различают одно-, двух-, трех- четырех - пятикоординатные системы управления. Из них какое-то число координат управляется одновременно (параллельно), а какое-то — последовательно. В зависимости от элементной базы и уровня использования ЭВМ различают системы первого, второго, третьего поколения. Устройства ЧПУ первого поколения не имели встроенного интерполятора. Программа, записанная на перфоленту при помощи вынесенного интерполятора, переписывалась на магнитную ленту, которую использовали для управления станком. На магнитную ленту трудно записать большое число технологических команд. Это ограничивает технологические возможности системы. Устройства ЧПУ второго поколения имеют встроенный интерполятор и управляются от перфоленты. Для подготовки перфоленты используется ЭВМ. Устройства ЧПУ третьего поколения (системы CNC) имеют встроенный микропроцессор. Это позволяет: · вместо аппаратного обеспечения функций системы управления использовать программное обеспечение; · реализовать более гибкий процесс программирования (ввод программы с клавиатуры, подготовка программы при изготовлении первой детали); · использовать дисплей и режим диалога; · использовать как программоноситель не только перфоленту, но и компакт-кассеты, диски с памятью и др.; · значительно расширить функции системы управления: · реализовать типовые диагностические программы, · организовать поиск неисправностей, · осуществить оптимизацию технологических процессов, · коррекцию параметров, · оперативное планирование, · информирование оператора о состоянии системы, · давать рекомендации оператору о необходимых действиях для поддержания работоспособности и т. д. Функциональные составляющие ЧПУ Для того, что бы сделать из обычного станка станок с ЧПУ необходимо внедрить определенные компоненты в его структуру. Недостаточно просто подсоединить станок к компьютеру, что бы он работал по программе - необходимо модернизировать механическую и электронную «начинку» станка. Условно СЧПУ (Систему числового программного обеспечения) можно разделить на три подсистемы: · подсистема управления · подсистема приводов · подсистема обратной связи Подсистема управления – является центральной частью всей СЧПУ. С одной стороны она читает управляющую программу и отдает команды различным агрегатам станка на выполнение тех или иных операций. С другой стороны взаимодействует с человеком, позволяя оператору контролировать процесс обработки. Сердцем подсистемы является контроллер (процессор) который отвечает за управление всеми электронными составляющими станка. Система управления может быть как закрытой, так и открытой. Закрытые системы имеют собственные алгоритмы и циклы работы. Закрытые системы нельзя изменять. Открытые системы все больше и больше внедряются в производство т.к. оператор имеет полный доступ ко всем алгоритмам и циклам работы, и позволяют изменять программу обработки. Подсистема приводов – система двигателей и передач, обеспечивающая выполнение команд подсистем управления. Подсистема обратной связи призвана обеспечивать подсистему управления информацией о текущем состоянии станка и обрабатываемой детали с помощью различных датчиков. Станки с ЧПУ имеют расширенные технологические возможности при сохранении высокой надежности работы. Конструкция станков с ЧПУ должна, как правило, обеспечивать совмещение различных видов обработки (точение-фрезерование, фрезерование-шлифование), удобство загрузки заготовок, выгрузки деталей (что особенно важно при использовании промышленных роботов), автоматическое или дистанционное управление сменой инструмента и т.д. Повышение точности обработки достигается высокой точностью изготовления и жесткостью станка, превышающей жесткость обычного станка того же назначения, для чего производят сокращение длины его кинематических цепей: применяют автономные приводы, по возможности сокращают число механических передач. Приводы станков с ЧПУ должны также обеспечивать высокое быстродействие. Повышению точности способствует и устранение зазоров в передаточных механизмах приводов подач, снижение потерь на трение в направляющих и других механизмах, повышение виброустойчивости, снижение тепловых деформаций, применение в станках датчиков обратной связи. Для уменьшения тепловых деформаций необходимо обеспечить равномерный температурный режим в механизмах станка, чему, например, способствует предварительный разогрев станка и его гидросистемы. Температурную погрешность станка можно также уменьшить, вводя коррекцию в привод подач от сигналов датчиков температур. Системами ЧПУ оснащают плоскошлифовальные, кругло- и бесцентрово-шлифовальные и другие станки. При создании шлифовальных станков с ЧПУ возникают технические трудности, которые объясняются следующими причинами. Процесс шлифования характеризуется, с одной стороны, необходимостью получения высокой точности и качества поверхности при минимальном рассеянии размеров, с другой стороны, - особенностью, заключающейся в быстрой потере размерной точности шлифовального круга вследствие его интенсивного изнашивания в процессе работы. В этом случае в станке необходимы механизмы автоматической компенсации изнашивания шлифовального круга. ЧПУ должно компенсировать деформации системы СИД, температурные погрешности, различия припусков на заготовках, погрешности станка при перемещении по координатам и т.д. Измерительные системы должны иметь высокую разрешающую способность, обеспечивающую жесткие допуски на точность позиционирования. Например, в круглошлифовальных станках такие приборы обеспечивают непрерывное измерение диаметра заготовки в процессе обработки с относительной погрешностью не более 2×10-5 мм. Контроль продольного перемещения стола осуществляется с погрешностью не более 0,1 мм. Для шлифовальных станков используют системы типа CNC с управлением по трем-четырем координатам, но в станках, работающих несколькими кругами, возможно управление по пяти-шести и даже по восьми координатам. Взаимосвязь между оператором и системой ЧПУ (CNC) шлифовального станка в большинстве случаев осуществляется в диалоговом режиме с помощью дисплея. В системе управления применяются встроенные диагностические системы, повышающие надежность станков. Наиболее распространены круглошлифовальные станки с ЧПУ, дающие максимальный эффект при обработке с одной установки многоступенчатых деталей типа шпинделей, валов электродвигателей, редукторов, турбин и т.д. Производительность повышается в основном в результате снижения вспомогательного времени на установку заготовки и съем готовой детали, на переустановку для обработки следующей шейки вала, на измерение и т.д. При обработке многоступенчатых валов на круглошлифовальном станке с ЧПУ достигается экономия времени в 1,5-2 раза по сравнению с ручным управлением. Бесцентровые круглошлифовальные станки эффективно применяют при обработке деталей малого и большого диаметров без ограничения длины, либо тонкостенных деталей, а также деталей, имеющих сложные наружные профили (поршень, кулак и т.д.). В условиях массового производства эти станки характеризуются высокой производительностью и точностью обработки. В мелкосерийном и индивидуальном производстве применение таких станков ограничено из-за трудоемкости переналадки. Расширение областей применения бесцентровых круглошлифовальных станков сдерживают два фактора: большие затраты времени на правку кругов и сложность наладки станка, что требует значительных затрат времени и высокой квалификации персонала. Это объясняется тем, что в конструкции этих станков существуют шлифовальный и ведущий круги; устройства правки, обеспечивающие придание соответствующей формы поверхностям шлифовального и ведущего кругов; возможность установки положения опорного ножа; механизмы компенсационных подач шлифовального круга на обрабатываемую деталь и на правку, а также ведущего круга на деталь и правку; установка положения загрузочного и разгрузочного устройств. Применение СЧПУ позволило управлять многокоординатным функционированием бесцентровых круглошлифовальных станков. В системе управления станком используют программные модули, которые рассчитывают траектории инструмента (круга, алмаза), его коррекцию и взаимодействие с человеком. Для обработки деталей с различными геометрическими формами (конус, шар и др.) создается программное обеспечение: диспетчер режимов, интерполятор и модуль управления приводами. При обработке и правке число сочетаемых управляемых координат может доходить до 19, в том числе по две-три координаты отдельно для правки шлифовального и ведущего кругов. |