Главная страница
Навигация по странице:

  • 5. Фрагменты гемоглобина из кости тиранозавра (Tyrannosaurus rex)

  • 6. Последствия работы доктора М. Швейцер с соавторами

  • Молекулярная палеонтология и эволюционные представления о возрасте ископаемых останков. Молекулярная палеонтология и эволюционные представления о возрасте ископаемых останков Алекс Лунный Введение


    Скачать 243.93 Kb.
    НазваниеМолекулярная палеонтология и эволюционные представления о возрасте ископаемых останков Алекс Лунный Введение
    Анкор Молекулярная палеонтология и эволюционные представления о возрасте ископаемых останков
    Дата23.12.2020
    Размер243.93 Kb.
    Формат файлаrtf
    Имя файла3151-1.rtf
    ТипДокументы
    #163568
    страница2 из 3
    1   2   3

    4. Биологические макромолекулы, фрагменты которых идентифицированы в останках организмов возрастом в "десятки и сотни миллионов" лет

    Как уже упоминалось, в конце 1980-х и, особенно, в 1990-х гг. молекулярная палеонтология достигла относительно больших успехов. Белки и ДНК были выделены и идентифицированы из различных ископаемых остатков порой прямо-таки умопомрачительного оцененного возраста. Подобные работы, помимо Кракова (Польша), проведены в целом ряде лабораторий США, в Австралии, Нидерландах, Германии и, если включить сюда митохондриальную ДНК кавказского "неандертальца", даже в России [21].

    В табл. 1 представлены имеющиеся на настоящий момент данные по выделению и/или идентификации белков и ДНК из ископаемых остатков в палеонтологическом плане: т.е. древних в смысле геологической хронологии. Использованные в цитированных работах методы (иммунохимический анализ либо сравнительное исследование характеристик очищенных белков) позволяют однозначно утверждать: это фрагменты (порой значительные) эндогенных макромолекул, т.е. принадлежащих самим ископаемым организмам, а не являющиеся посторонними примесями за счет бактерий, грибков и др.

    Можно видеть, что, несмотря на оцененные периоды в десятки, а порой и в сотни миллионов лет, в образцах остались не распавшиеся фрагменты белков, которые можно определить с помощью антител. То есть фрагменты такой величины, что они способны антителами узнаваться.

    Относительно бета-кератина и коллагена следует отметить, что эти белки, вследствие своей особой жесткой молекулярной структуры, являются наиболее устойчивыми как к химическим воздействиям, так и к деградации микроорганизмами [34]. В то же время, относительно сохранности даже коллагена в ископаемых остатках все не так уж и ясно.

    Ранние работы были сфокусированы на идентификации именно коллагена, поскольку он может быть детектирован в костях с помощью электронной микроскопии вследствие своей уникальной фибриллярной структуры [1]. И действительно, в целом ряде исследований коллагеновые микроструктуры были хорошо видны под электронным микроскопом в остатках костей динозавров, мамонтов и других ископаемых животных [6, 7, 13, 36–38]. Продемонстрировано, однако, что сохранение даже высокого уровня микроструктур не указывает с необходимостью на действительное наличие белковых молекул коллагена (структуры просто сохраняют их форму). В видимых коллагеновых структурах далеко не всегда идентифицируются специфические для этого белка аминокислоты [37] и не всегда такие структуры реагируют с антителами к коллагену [39].

    Отсюда вывод: обнаружение под электронным микроскопом даже хорошо сохранившихся коллагеновых структур (и сосудистых стенок) внутри ископаемых костей не указывает однозначно на присутствие в них самого белка, поэтому ни к каким "сенсационным" креационистским выводам такие структуры в костях, например, динозавра [7], приводить не должны. Наверное, даже эти уже безколлагеновые образования вряд ли способны выдержать миллионы лет, но доказательств тому нет, поскольку в них, по-видимому, часто отсутствует лабильный органический материал (как в упомянутых выше псевдоморфозах песчаных мумий динозавров).

    Представленные же в табл. 1 данные, в том числе по коллагену, отражают действительную идентификацию белковых фрагментов. Во всех перечисленных случаях действительно выделили и/или детектировали части белков. Наиболее сохранными оказываются, понятно, коллаген, кератины и остеокальцин, а наименее — более лабильные и более сложные белки с глобулярной структурой, в частности альбумин.

    Имеется, однако, одно важное и фундаментальное исключение, связанное с работами все той же доктора Мэри Швейцер.

    1. Кератины — белки, формирующие волосы, перья, чешую и т.п. образования. Вследствие жесткости своей молекулярной структуры очень устойчивы к внешним воздействиям. Бета-кератин для современных животных обнаружен только у рептилий и птиц (чешуя, перья) [34].

    2. Представлена продолжительность периода или эпохи.

    3. Коллаген. Соединительная ткань организма формирует хрящи, сухожилия, связки, остов костей и т.д. Механическая и поддерживающая функция этой ткани обеспечивается нерастворимыми нитями, образованными высокополимерными соединениями коллагена — самого распространенного белка животных. Мономеры коллагена представляют собой трехнитевые белковые "тяжи", которые связываются друг с другом поперечными молекулярными связями (сшивками), образуя коллаген. Такая жесткая структура обеспечивает механическую прочность при сопутствующей эластичности [34].

    4. Остеокальцин — низкомолекулярный костный белок, содержащий много глутаминовой кислоты; специфичен для костей.

    5. Результаты авторов из мормонского университета (США), по-видимому, спорны: имеется комментарий на данную работу ведущих молекулярных палеонтологов [35].

    5. Фрагменты гемоглобина из кости тиранозавра (Tyrannosaurus rex)

    В 1990 г. в восточной части штата Монтана выкопали останки тиранозавра. Почти сразу же (возможно, под влиянием фильма С. Спилберга), на Биологическом факультете университета штата Монтата, в г. Бозмене (Bozeman), США, началось исследование его костей в аспекте молекулярной палеонтологии. Работы проводились в группе ассистента профессора, доктора биологических наук (Ph.D.) Мэри Швейцер (Mary Higby Schweitzer). Руководителем лаборатории являлся (и является до сих пор) профессор Джек Хорнер.

    Если посмотреть в Интернете страничку, посвященную сведениям о докторе М. Швейцер [40], то на фото перед вами предстанет симпатичная и жизнерадостная особа, имеющая, несмотря на свой не очень-то значительный возраст, солидный послужной список и, по-видимому, высокую профессиональную квалификацию. Именно доктор Мэри может ныне считаться, полагаю, одним из ведущих мировых исследователей в области молекулярной палеонтологии.

    Программная экспериментальная работа, посвященная изучению макромолекул в кости тиранозавра, опубликована в трудах АН США и, как все статьи этого издания, полностью помещена в Интернете (Schweitzer M.H. et al., 1997) [8]. Последнее позволяет углубленно ознакомиться со всеми методическими тонкостями и выводами авторов без посещения специальной библиотеки. Специалисту видна тщательность при выполнении экспериментов, адекватность методов и достоверность полученных результатов.

    Хотя нашей задачей не является рассмотрение узких специальных вопросов биохимии и иммунохимии, все же придется разъяснить, что сделано и как. Иначе будет непонятно, да и слишком важна проблема.

    Из участка кости с видимыми под микроскопом сосудистыми стенками провели экстракцию белкового материала. Такового было получено, с позиций биохимика-аналитика, ощутимое количество — порядка 1 мг. Фрагменты распавшихся белков (полипептиды и пептиды) явно имели небольшой размер, поскольку, как указывают авторы, они не идентифицировались при электрофорезе в денатурирующих условиях [8]. Последний метод — это стандартный подход при разделении белковых смесей в соответствии с их молекулярной массой, и белки хорошо видны на электрофореграмме (при стандартных условиях опыта), только когда они имеют молекулярную массу не менее 6.000–10.000 "углеродных единиц" (вспомним школьную химию: углеродная единица — это 1/12 от массы обычного нам изотопа углерода 12C). Масса средней аминокислоты (всего их 22) составляет 140 у.е. (от 89 до 240 у.е.; большинство 120–150 у.е.). Следовательно, чтобы белок был хорошо "виден" при электрофорезе, он должен состоять из 40–70 аминокислот. Но в белковом экстракте из кости тиранозавра такие полипептиды не обнаруживались, следовательно, фрагменты оказались меньшими.

    Априори было ясно, что основную часть должны составлять фрагменты именно гемоглобина — наиболее "обильного" белка крови (сравним только альбумин) — ведь экстрагировали те участки кости, где локализовались видимые под микроскопом стенки сосудов.

    Далее авторы иммунизировали белковым экстрактом крыс. Обычно иммунизируют кроликов или морских свинок (у последних иммунный ответ сильнее, а от кроликов — больше материала), но в данном случае, в связи с малым количеством белкового экстракта, пришлось, наверное, выбрать крыс, которые меньше кроликов и свинок.

    Иммуноген (экстракт) вместе с адъювантом Фрейнда (стандартный способ усилить иммунный ответ) вводили двум крысам, и у обеих выработались антитела (последнее указывает, что иммуногенность была достаточно стабильна; значит, фрагменты не являлись совсем уж ничтожными). Хорошо известно, что степень иммуногенности (т.е. способность вызывать выработку антител у животных) очень зависит от размера белковой или пептидной молекулы. Невозможно выработать антитела против фрагмента белка с молекулярной массой менее 1000, т.е. состоящего из порядка 7–8 аминокислот (см., например, [41]).

    Однако авторы не просто получили "какой-то" иммунный ответ. Не это было их задачей. Они использовали антисыворотку крови крыс для дальнейших иммунохимических методов определения. Отсюда следует, что уровень антител в сыворотке был достаточно высок (иначе методы бы не сработали), а такое может быть обеспечено, только если фрагменты белка имели молекулярную массу значительно более 1000.

    Думаю, что ни один специалист (даже иммунохимик) не скажет, какие точно минимальные размеры фрагментов белка при иммунизации необходимы, чтобы антисыворотка имела "рабочий вид". Он скажет, что иммуногенность зависит от конкретного типа белка, от конкретного типа фрагментов (она связана и с аминокислотным составом), от конкретных животных и т.п. Здесь просто голая эмпирика, можно сказать, почти ремесло: кто дольше работал и с бóльшим количеством белков, тот и способен дать более правдоподобный ответ. Тем более, что на практике редко получают антисыворотку к столь малым молекулам, поскольку таких белков в живом организме просто мало.

    Ваш покорный слуга, хотя и получал антисыворотку и делал аналогичные вещи в области определения белков иммунохимическими методами, все-таки не является конкретно иммунохимиком. И тем не менее позволю себе сделать следующий вывод. Чтобы антисыворотка к каким-то белковым фрагментам, выделенным из той кости тиранозавра, "работала" так, как это наблюдалось у авторов [8], она все-таки должна была иметь ощутимый титр (концентрацию) антител. Поэтому и иммуногенность вводимых крысам полипептидов была достаточно ощутима, а, значит, и их молекулярная масса (длина молекулы) — тоже. Полагаю, что величина последней составляла никак не менее 2000–3000 у.е., что соответствует цепочке из порядка 15–20 аминокислотных остатков.

    Указанный вывод косвенно следует в том числе и из руководств по иммунохимическим методам анализа (например [42]).

    Далее авторы [8], использовав полученную антисыворотку, с помощью двух иммунохимических методов определили, реагирует ли она с препаратами гемоглобинов (коммерческих, выпускаемых химическими фирмами) из различных источников. При иммуноферментном анализе в растворе (ELISA) было обнаружено, что антисыворотка отчетливо "узнает" гемоглобин индюка, а с помощью иммуноблоттинга (это на специальной мембране) получены еще более исчерпывающие данные.

    В [8] проделаны все стандартные контроли и представлен почти весь первичный экспериментальный иллюстративный материал. Перед иммуноблоттингом авторы убедились, что имеющиеся у них стандартные препараты гемоглобинов кролика, индюка и змеи вполне качественные. Действительно, хотя и закупленные, наверное, на крупных химических фирмах (в статье не указано, но вряд ли сами очищали), такие препараты могут портиться при хранении даже в холодильнике (микробы съедят, вода попадет). Это вам не доказывать, что выделенным не распавшимся фрагментам белка тиранозавра миллионы лет. Попробуй не убедись, что твои стандартные препараты современных белков не развалились у тебя (частично, конечно) при хранении в течение нескольких лет, или же при неаккуратной транспортировке с фирмы (когда лед положить забыли), и коллеги-биохимики могут указать на возможность некорректности и артефактов, посмотрев полученные тобой данные.

    Это только у тиранозавра его полипептиды десятки миллионов лет нераспадаться способны.

    Как бы там ни было, перед иммуноблоттингом авторы провели электрофорез своих стандартных гемоглобинов (электрофореграмма представлена) и убедились, что все они имеют присущую гемоглобинам молекулярную массу (порядка 64.000), то есть, что препараты "не развалились".

    После этого проводили их иммуноблоттинг с антисывороткой к белковому экстракту из кости тиранозавра и обнаружили отчетливую (во всяком случае, на фото) реакцию с гемоглобинами кролика и индюка. А вот с гемоглобином змеи антитела не реагировали, и это послужило контролем того, что антитела связываются не с любым белком. Если бы антитела "узнали" еще и гемоглобин змеи, то авторам пришлось бы для контроля исследовать реакцию с еще каким-нибудь белком, не гемоглобином (с альбумином, к примеру). Чтобы сказать: да, реакция характерна не просто для белков как таковых, а именно и только для гемоглобинов.

    Но в молекуле гемоглобина змеи не оказалось того участка аминокислотной последовательности, который соответствовал фрагментам гемоглобина тиранозавра, в то время как в гемоглобинах индюка и кролика он имелся. Антитела не среагировали с гемоглобином змеи, и, поэтому, авторам повезло: не пришлось проводить дополнительное исследование реакции с каким-нибудь другим, неспецифическим белком. В качестве его случайно выступил гемоглобин змеи.

    С первого взгляда кажется странным: антитела к белку тиранозавра, а реагируют с гемоглобином кролика, но не змеи. Но это и не важно: просто такой участок полипептидной последовательности во фрагментах весьма распавшегося гемоглобина тиранозавра попался, которого нет в белке змеи. Тем более, что он имеется в гемоглобине птицы (индюка), а именно к птицам ящеры типа тиранозавра и близки [10, 11].

    Авторы [8] проделали также иммуноблоттинг с экстрактами из бактерий и даже из окружавшего кость песчаника, но антитела со всем этим, конечно, не среагировали. Таким образом, почти все мыслимые контроли были соблюдены.

    Однако идентификацией белковой части фрагментов гемоглобина тиранозавра М. Швейцер с соавторами похвально не ограничились. В состав молекулы гемоглобина входит специфичное молекулярное образование — гем: железо в особой координационной форме в связи с порфирином (это кольцевая структура; грубо говоря, что-то типа нескольких бензолов). Авторы [8] для идентификации специфической структуры гема в экстрактах из костей динозавра применили целый комплекс из пяти физико-химических методов: ЯМР, спектроскопию в ультрафиолете, ЭПР, HPLC и др. (не станем подробно рассматривать суть этих известных методов). Было обнаружено, что во всех случаях полученные показатели характерны для гема.

    Кроме того, в местах локализации структур, соответствующих сосудам внутри костей, окраска была характерной для остатков крови (красно-коричневая). Такую же окраску имел и белковый экстракт [8, 16].

    Это все, но этого вполне хватает, чтобы сделать следующие выводы:

    1) Работа проведена корректно; использованные подходы адекватны, а полученные данные убедительны.

    2) Найдены остатки специфичной структуры гема в участках сосудистой стенки кости тиранозавра.

    3) Строго идентифицированы белковые фрагменты молекулы именно гемоглобина тиранозавра возрастом "65 млн. лет".

    4) Эти фрагменты, хотя и малы, вряд ли состоят из менее чем 15–20 аминокислотных остатков, что составляет 3–5% от интактной (исходной) молекулы гемоглобина. В самом теоретически "худшем" случае фрагменты не могут включать менее 7–8 аминокислот (2% от интактной молекулы), но этот случай весьма проблематичен, исходя из их ощутимой иммуногенности. В наиболее же "лучшем" теоретически случае фрагменты не могут быть длиной более 40–70 аминокислот (10–15% от интактного белка), поскольку не видны при электрофорезе.

    Таким образом, гемоглобин тиранозавра за "65 млн. лет" почему-то не распался на все 100%, а только максимум на 95–98%. Что же это за такой, по-видимому, никому неизвестный сверхустойчивый полипептидный участок входит в его состав? Новое слово в науке о гемоглобине и в науке о тиранозаврах.

    6. Последствия работы доктора М. Швейцер с соавторами

    Мы уже знаем, как доктор Мэри поспешила со своей, по словам одного эволюциониста "рекламной" [14], статьей-интервью в научно-популярном журнале в 1997 г.

    "Реальный Парк Юрского периода" [18] у нее в лаборатории, понимаешь. И кость тиранозавра у нее почему-то то не окаменевшая [13], то "недоокаменевшая" [8, 18].

    Известный креационист доктор К. Виланд уделил большое внимание всем этим исследованиям и интервью, причем немного запутался с недоокаменением, к тому же слишком сосредоточившись, видимо, на научно-популярном в ущерб действительно научному [15, 16]. Он получил свою порцию критики от эволюциониста [14], и, наверное, не от одного.

    Однако, как мы видели выше, фундаментальная работа по фрагментам гемоглобина тиранозавра, опубликованная в журнале АН США [8], в дальнейшем явно стала замалчиваться. Ее не цитирует даже сама доктор М. Швейцер в обзоре за 2003 г. [1].

    А на справедливые замечания доктора К. Виланда, что для иммуногенности фрагменты белка должны быть достаточно большими, какой-то эволюционист Джек Дебон (Jack DeBaun) небрежно ответил ему, что для иммуногенности, дескать, было достаточно гема с прикрепленными к нему 3–4 аминокислотами [16]. Спросил доктор К. Виланд своего приятеля — специалиста по моноклональным антителам, правда ли это, но тот сразу очень сильное сомнение насчет 3–4 аминокислот выразил [16]. И мы скажем здесь: гем к иммуногенности отношения не имеет вовсе, иначе бы мы просто жить не смогли, поскольку гем един для всех видов позвоночных, а эритроциты у нас распадаются постоянно, и гем в кровь выходит. Ребенку ясно (только не Дж. Дебону [16]), что не вынесли бы мы такой постоянной аутоиммунной нагрузки собственными антителами к собственному гему. И чтобы пептид в 3–4 аминокислоты наработку антисыворотки у крыс (причем "рабочей" антисыворотки) вызывал, того не видано и у папуасов. С чем хочешь небелковым свяжи такой пептид для иммунизации, все равно не получится.

    А еще видно, как изо всех сил стараются забыть про ту "unmineralized", то есть "не окаменевшую" кость тиранозавра, какой она в 1994 г. была, заменив ее на "недоокаменевшую частично" (nonpermineralized) [14, 17] (доктор М. Швейцер, видимо обжегшись, и вовсе о ней помалкивает осторожно [1]).

    Вопрос же о возрасте кости сомнению эволюционистами не подвергается: 65 млн. лет, и все тут [1, 14, 17]. Указывается, что это данные не только радиоизотопного анализа, но и основанные на определении степени рацемизации аминокислот [17].

    Смысл последнего метода состоит в следующем. Все живущие на Земле организмы имеют в составе белков только L-формы аминокислот (кристаллы которых вращают плоскость поляризованного света влево). Однако если синтезировать аминокислоту химически (а не выделить из биологического материала), то мы получим рацемат — смесь из равных количеств L- и D-форм (оптических изомеров), т.е. из лево- и правовращающих. Вследствие стремления к состоянию химического равновесия, соединение, исходно представленное какой-то одной изомерной формой (L- или D-) со временем превращается в рацемат из равных количеств обеих форм. И если организм умирает, то, в зависимости от времени, соотношение L/D формы становится все меньше и меньше, пока не достигнет единицы. Именно на определении подобного соотношения и основано датирование ископаемых останков по степени рацемизации аминокислот [1, 43, 44].

    Но и тут не все оказывается столь просто: даже беглое ознакомление со специальной литературой показывает, что процесс рацемизации зависит от окружающих условий. Так, присутствие воды — фактор, влияющий на рацемизацию, а для некоторых аминокислот в процессе нагревания (105°С), выявляется обратная кинетика реакции рацемизации [44]. Конечно, 105°С немало, но ведь это в лабораторных условиях, когда время ограничено. А в течение сотен и тысяч лет, наверное, и 20–30°С роль сыграют. Логичным это кажется с химических позиций. И вообще, скорость рацемизации постоянна только при постоянной температуре [45], чего и следовало ожидать. В результате даже использующие этот метод с осторожностью подходят к его результатам, указывают на некоторые сложности [46] и рекомендуют применять его в комплексе с радиоизотопной датировкой [1, 47].

    А те, кто занимается радиоизотопной датировкой, наверное, рекомендуют использовать ее в комплексе с определением рацемизации.

    Поэтому сомнительно, что кто-то кроме любителей эволюции способен безоговорочно доверять таким датировкам, которые насчитывают 65 млн. лет для образцов сохранившихся полипептидов, обладающих к тому же иммуногенной активностью. Ведь иммуногенная активность, все-таки, — это один из видов биологической активности.

    7. Как молекулярные палеонтологи-эволюционисты объясняют возможность сохранения фрагментов биомолекул в течение десятков миллионов лет

    Как только молекулярная палеонтология возникла, так, видимо, сразу появилась необходимость объяснить механизмы, обусловливающие сохранность достаточно высокоэнергетических биомолекул в течении десятков и сотен миллионов лет. Это только палеонтологи прошлого не задумывались над подобным вопросом: считали, что все, что сохранилось за "биллиарды" лет, окаменело, отвердело, заместилось силикатами, песчаниками и кремнеземами. Или в виде угля и нефти представлено. А иначе бы не сохранилось "по определению" [10, 11]. Молекулярным же палеонтологам пришлось волей-неволей разрабатывать возможные механизмы, поскольку в противном случае эволюционная "наука" (в смысле происхождения одних родов и семейств от других) могла лишиться главной опоры своих умозрительных построений — гигантских промежутков времени.

    Ваш покорный слуга, кроме общих фраз типа адсорбции на неорганических носителях, сам в этом роде придумать что-либо неспособен. И не остается ничего другого, как только рассмотреть соответствующие места из все того же информативного обзора доктора М. Швейцер за 2003 г. [1].

    Однако и там не очень много убедительного. Сначала признается, что все белки через какое-то время распадаются вследствие воздействий протеолитических (переваривающих) ферментов, микробов, окисления, гидролиза, внутри- и межмолекулярных взаимодействий. Отмечается, что механизмы столь долгого, миллионолетнего сохранения ДНК и белков еще только предстоит выяснить. (Mechanisms for the preservation of organic compounds such as DNA or protein over the course of geological time remain to be elucidated.) [1]. Затем говорится, что, тем не менее, накапливается все больше фактов о реальности указанного сохранения. И действительно: если иммуногенные фрагменты белков обнаруживаются в образцах, которым приписан возраст до сотен миллионов лет (см. выше табл. 1), то, следуя логике эволюционистов, возраст таких фрагментов сотни миллионов лет и должен насчитывать.

    Далее автор обзора 2003 г., опираясь на гипотезы других исследователей, рассматривает следующие возможные механизмы, обусловливающие указанные чудеса [1]:

    1. Распад биомолекул и разрушение внутримолекулярных связей могут приводить к появлению продуктов, которые, реагируя между собой, формируют комплексы биополимеров, резистентных к дальнейшей деградации.

    Комментарий. Это не совсем понятно, поскольку даже те комплексы биополимеров, все-таки, биомолекулами со всеми высокоэнергетическими связями и остаются.

    2. Биомолекулы способны стабилизироваться через связывание с органическими продуктами распада в окружающей почве, что ингибирует активность ферментов, расщепляющих ДНК и белки. Такой феномен выявлен в лабораторных исследованиях [1, 48].

    Комментарий. Вот только из этих исследований совершенно не ясно, как будут вести себя подобные комплексы в течение не только миллионов, но и просто десятков лет.

    3. Раннее "цементирование" органических остатков при погребении отложений, что защищает объекты от микробов и кислорода.

    Комментарий. И тут не совсем верится, что в течение геологических эпох (миллионы лет) те "цементные пломбы" не будут нарушены какими-нибудь подвижками пластов, землетрясениями, наводнениями и извержениями вулканов. Гемоглобин тиранозавра, опять же. Допустим, "зацементирована" кость была, защищена от микробов. Почему же тогда гемоглобин все-таки распался на 95–98%? А если микробы и другие воздействия, несмотря на "цемент", место имели, почему не до конца белок распался?

    4. Связывание (адсорбция) белков и ДНК с минеральным субстратом, причем сохранность увеличена в биоокаменевших (biomineralized) тканях, где компонент белка в минеральном кристалле попадает в закрытую систему, предохраняющую от молекул воды. Например, сохранение белков в комплексе с апатитом (минеральной составляющей костей) возможно в течение длительного времени. Это наиболее важный механизм.

    Комментарий. Может, все и так, но окаменевшая кость, в которой к тому же имеются "недоокаменевшие" участки, это не алмаз и даже не янтарь. Полагаю, что те "закрытые системы" в кристаллах должны были не раз становиться открытыми в течение геологических промежутков времени, когда подвергались длительным воздействиям даже слабых растворов неорганических кислот, образующихся путем взаимодействия между просачивающейся водой и минералами (даже углекислая кислота могла сыграть роль). Или воздействиям слабых растворов щелочей. Вода, как известно, она и камень точит.

    Кто-то заметит, что останки могли исходно оказаться погребенными столь глубоко, что на их "белково-минеральные кристаллы" ни разу не попала никакая вода. Думаю, что тогда эти останки никто и никогда бы не обнаружил. А раз эти останки, как пишут исследователи, "excavated" (откопали), то значит, что не так уж глубоко они и залегали (причем часто не в пустынях это было). И значит, что вода вряд ли была так далеко, тем более в течение миллионов лет. Или же надо предположить, к примеру, что в течение 64.999.999 лет останки того тиранозавра без доступа воды в глубинах Земли жюль-верновских находились, и только где-нибудь в последний год в верхние пласты поступили? Сомнительно это.

    В результате даже автор обзора по молекулярной палеонтологии [1] заключает:

    "Существует, однако, немного экспериментальных свидетельств о том пределе [промежутка] времени сохранения, который может быть обусловлен указанными механизмами". ("However, there is little experimental evidence for a temporal limit to preservation enhanced by such mechanisms".)

    Отдельным является важный вопрос о термодинамических закономерностях сохранения пептидной связи (между аминокислотами в белках). Эта связь достаточно стабильна, несмотря на то, что ее свободная энергия гидролиза относительно велика, если сравнивать, например, с неорганическими соединениями [34]. Чтобы разрушить химически все пептидные связи в препарате белка, его раствор в очень концентрированной соляной кислоте (6 н) запаивают в ампулу и 1–3 суток выдерживают при 100–105°C [49]. В этом случае разрушаются все внутримолекулярные связи.

    Другой способ — те же условия, но при 37°C. Здесь белок распадается не полностью: помимо отдельных аминокислот, получается много ди- и трипептидов (по 2–3 аминокислоты), но не более [49]. Однако пептиды в 2–3 аминокислоты не являются иммуногенными, как то было с гораздо бóльшими фрагментами гемоглобина тиранозавра, поэтому для наших прикидок можно считать, что белок практически распался.

    Протеолитические ферменты (например, пепсин и трипсин) проделывают почти то же самое (хотя и не до конца) при гораздо менее жестких условиях. Вернее, вовсе не жестких. И микроорганизмы своими переваривающими ферментами осуществляют то же, причем часто — до конца. Всякий знает, как быстро микроорганизмы деградируют белковые питательные субстраты.

    Вышеуказанное химическое расщепление в сильной кислоте при температурах 37–105°C обусловлено уже не биохимическими (ферментами), а чисто химическими, термодинамическими процессами. Они подчиняются закону, выраженному уравнением, в которое входят параметры свободной энергии связи и температура. Исходя из распада пептидных связей за 1–3 суток при 37–105° C, специалист по химической термодинамике способен, наверное, хотя бы прикидочно рассчитать то время, за которое должен произойти распад, например, при 20°C. Концентрация водородных ионов (кислотность) также является одним из параметров в исходных термодинамических уравнениях равновесия химической реакции. И здесь, полагаю, можно оценить то время, которое понадобится для распада при pH 7 (нейтральные условия) по сравнению с pH сильных растворов соляной кислоты.

    К сожалению, в креационной литературе нам не встретились серьезные расчеты подобного рода (хотя они, может, и имеются). Но есть большое подозрение, что полученные в результате таких расчетов промежутки времени "самораспада" окажутся на много порядков меньше тех "десятков и сотен миллионов" лет, в течение которых полипептидные фрагменты гемоглобина и других белков (см. табл. 1) оказались не разрушенными.

    Самое же главное относительно их сохранности — это, все-таки, вездесущее действие микроорганизмов. Существуют большие сомнения, что те кости на нашей Земле могли находиться в стерильных условиях миллионы — сотни миллионов лет.

    8. Фактическая сохранность фрагментов макромолекул в зависимости от времени, прошедшего с момента захоронения

    Кажется познавательным представить сведения из, так сказать, областей молекулярной археологии и молекулярной антропологии. А именно — сохранность иммуногенных фрагментов белков и ДНК в останках доисторических и исторических людей (табл. 2).
    1   2   3


    написать администратору сайта