СЭУ-последний Кирис Учебное пособие. Н. А. Козьминых Судовые энергетические установки и электрооборудование судов учебник
Скачать 11.94 Mb.
|
3.5. Принцип действия двухтактных дизелейВ двухтактных двигателях цикл осуществляется за один оборот коленвала, что соответствует двум тактам. Следует подчеркнуть, что двухтактные двигатели, как правило, являются не тронковыми (описано выше), а крейцкопфными (за исключением бензиновых двухтактных мотоциклетных двигателей). Принципиальная схема устройства и работы двухтактного двигателя показана на рис. 26, а его цикл – на рис. 27. Из рис. 26 видно, что шток поршня 3 движется строго вертикально и головку поршня делают гораздо меньшей высоты. На рисунке также показан турбокомпрессор ТК, который приводится в действие газовой турбиной ГТ, работающей на продуктах сгорания, выходящих из двигателя через выхлопные окна. По ходу сжатого в ТК воздуха расположен охладитель воздуха ОВ, который осуществляет промежуточное охлаждение воздуха перед поступлением его в цилиндры. Это позволяет увеличить весовой заряд воздуха в цилиндре, что оказывает благоприятное влияние на все тепловые и газодинамические процессы, из которых складывается рабочий цикл судового дизельного двигателя. Рассмотрим индикаторную диаграмму двухтактного двигателя (рис. 27). Пусть поршень находится в НМТ – т. 1. В данном случае втулка двигателя имеет окна (прорези) разной высоты – окна меньшей высоты выходят в продувочный ресивер (коллектор), а окна большей высоты сообщены с выхлопным ресивером. Таким образом, пока верхняя кромка поршня (на рисунке двигатель для удобства построения индикаторной диаграммы показан лежащим) при его движении к ВМТ не закроет все окна, процесс сжатия не начнется. В конце сжатия 3–4 в цилиндр впрыскивается топливо и происходит горение 4–5–6. В конце рабочего хода 6–7 (расширения продуктов сгорания) в т. 7 поршень откроет выхлопные окна и произойдет выхлоп, который начнется процессом 7–8 – свободным выпуском отработавших газов. После открытия продувочных окон (т. 8) будет происходить принудительная продувка цилиндра (8–1–2), которая заканчивается закрытием продувочных окон. В процессе 2–3 в данном случае будет происходить потеря части воздушного заряда цилиндра (1–2 показывает наполнение цилиндра воздухом). Следует отметить, что параметры состояния рабочего тела в характерных точках индикаторной диаграммы мало отличаются от таковых в четырехтактных двигателях, поэтому нет смысла останавливаться на них подробно. 3.6. Индикаторные показатели работы ДВСПоказатели работы двигателя подразделяются на индикаторные (внутренние), характеризующие совершенство рабочего цикла в цилиндре и учитывающие только тепловые потери в самом цилиндре, и эффективные (внешние), учитывающие помимо тепловых и механические потери, которые имеются при передаче энергии расширения газов через поршень и кривошипно-шатунный механизм на коленчатый вал двигателя К индикаторным показателям двигателя относятся среднее индикаторное давление рi, индикаторная мощность Ni, индикаторный удельный расход топлива bi и индикаторный КПД ηi. В результате осуществления цикла тепловая энергия, выделяющаяся при сгорании топлива, с известной степенью совершенства (определяемой индикаторным КПД) превращается в полезную работу, развиваемую газами в цилиндре двигателя и называемую индикаторной работой цикла ℓi. При этом давление в цилиндре непрерывно меняется. Для удобства ведения расчетов и сравнения разных двигателей переменные по ходу поршня давления можно заменить постоянным (фиктивным) давлением, которое обеспечивает получение той же работы, что и цикл с переменным давлением. Это среднее постоянное давление называется средним индикаторным давлением pi. Следовательно, под средним индикаторным давлением подразумевается условное постоянное давление, действующее на поршень на рабочем ходе и совершающее за один цикл работу, равную индикаторной работе замкнутого цикла. Графически среднее индии-каторное давление представляет собой высоту прямоугольника, площадь которого равна пло-щади индикаторной диаграммы, а основание – длине диаграммы (рис. 28). Среднее индикаторное давление позволяет сравнивать любые циклы и двигатели, независимо от способа осуществления рабочих процессов. Чем больше рi, тем больше мощность двигателя при прочих равных условиях (размерах, частоте вращения и т.д.). Рис. 28. К определению среднего индикаторного даления Индикаторной мощностью Ni называется мощность, разви-ваемая продуктами сгорания над поршнем, т.е. такой мощностью обладал бы двигатель, не имеющий поршня, коленвала и остальных деталей группы движения. Вспомнив, что мощность – это работа в единицу времени, а работа – это сила, умноженная на перемещение, запишем выражение для определения индикаторной мощности ДВС: , кВт, (6) где – диаметр цилиндра; – ход поршня; – частота вращения в 1/мин.; i – количество цилиндров; – сила продуктов сгорания; – работа продуктов сгорания; – мощность одного цилиндра; – коэффициент тактности, равен 1 для двухтактных и ½ для четырехтактных ДВС; – перевод оборотов в минуту в обороты в секунду; 1000 – перевод Вт в кВт. Индикаторный коэффициент полезного действия η учитывает все потери теплоты, связанные с работой реального двигателя. При этом следует помнить, что потерю теплоты g2, связанную с необходимостью выполнения 2-го закона термодинамики, учитывает термический КПД ηі. Таким образом, ηi называется отношение количества теплоты, преобразованной в работу без учета механических потерь (т.е. как будто бы у двигателя, не имеющего деталей группы движения – поршней, штоков, шатунов, коленвала), ко всему количеству подведенной теплоты: , (7) где – индикаторный расход топлива на двигатель; – низшая теплота сгорания топлива; – удельный (на 1 кВт) индикаторный расход топлива (). Очевидно, что , и являются расчетными величинами. |