Главная страница

НАЧАЛО И КОНЕЦ ВСЕЛЕННОЙ. Начало и конец вселенной


Скачать 307.75 Kb.
НазваниеНачало и конец вселенной
АнкорНАЧАЛО И КОНЕЦ ВСЕЛЕННОЙ
Дата12.02.2023
Размер307.75 Kb.
Формат файлаrtf
Имя файлаНАЧАЛО И КОНЕЦ ВСЕЛЕННОЙ.rtf
ТипРеферат
#933028
страница1 из 3
  1   2   3

НАЧАЛО И КОНЕЦ ВСЕЛЕННОЙ


 

Содержание

 

Введение

Ранняя Вселенная

Назад к Большому взрыву

Абсолютная сингулярность

Раздувание

Эпоха адронов

Эпоха лептонов

Эпоха излучения

Фоновое космическое излучение

Эпоха галактик

Дальнейшая судьба Вселенной

Скрытая масса

Судьба замкнутой Вселенной

Отскок

Судьба открытой Вселенной

Заключение

Список литературы

Словарь терминов

 

Введение


 

Красота и величие темного ночного неба всегда волнуют нас. Каждое светящееся пятнышко на нем — образ звезды, ее свет, который давно, может быть за­ долго до нашего рождения, оторвался от светила. Че­ ловеку трудно представить себе необъятные просторы Вселенной, протекающие в ней сложные и мощные процессы приводят нас в трепет. Свет от некоторых видимых объектов шел к Земле миллионы лет, а ведь расстояние от нас до Луны тот же луч света преодоле­ вает меньше чем за две секунды.

Наша Земля — всего лишь песчинка, затерявшаяся в бескрайнем пространстве, одна из девяти планет, об­ ращающихся вокруг неприметной желтой звезды, на­ зываемой Солнцем…

Многие люди, всматриваясь в небо и смотря на звёзды, думают, что хотя их жизнь и имеет свой конец, но эти все далекие звезды будут всегда – Вселенная бесконечна. Но это не так. Все в этом мире изменяется и Вселенная не исключение. Но было ли у Вселенной начало и будет ли конец? Если было начало, то для Вселенной было ''началом''? В этой работе   мне хотелось бы рассмотреть современные теории возникновение и развитие Вселенной.

Для данной работы в качестве основного материала использовалась книги ''Мечта Эйнштейна, в поисках единой теории строения Вселенной'', ''Фейманские лекции по физике'', ''Вселенная, жизнь, разум'' и ''Прошлое и будущее Вселенной''. Остальные источники использовались как дополняющие и поясняющие.

     Мы начнем с теории возникновение Вселенной.

Ранняя Вселенная


 

     Мы живем в расширяющейся Вселенной, которая, согласно теории Большого взрыва,   возникла примерно 18 миллиардов лет назад в результате взрыва не­вообразимой силы. В первые мгновения после взрыва не было ни звезд, ни пла­нет, ни галактик – ничего кроме частиц, излучения и черных дыр. Короче говоря, Вселенная находилась в состоянии полнейшего хаоса со столь высокой энер­гией, что частицы, обладавшие гигантскими скоростями, сталкивались практи­чески непрерывно. Это был, по сути, колоссальный ускоритель частиц, намного мощнее тех, которые построены в наши дни.

     Теперь ученые строят все более и более мощные установки, чтобы разоб­раться, как взаимодействуют высокоэнергичные частицы. Но крупные уско­рители очень доро­гостоящи, а на их строительство уходят годы. Поэтому не­которые особенно нетер­пеливые ученые обратились к ранней Вселенной. Ее в шутку называют “ускорителем для бедных”, хотя это и не самое удачное название. Если бы нам пришлось строить ускоритель на такие характерные для ранней Военной энергии, он протянулся бы до ближайших звезд.

     Раз уж строительство такой установки нам не по плечу, то, взяв за образец раннюю Вселенную или, по крайней мере, ее модель, можно попытаться понять, что происходит при столь больших энергиях.

     Но чем вызван интерес к явлениям, происходящим при таких энергиях? Прежде всего, тем, что они помогают понять природу фундаментальных частиц, а также фу­ндамен­тальных взаимодействий. Установление связи между ними существенно для уяснения взаимозависимости космических явлений, а согласно современным теориям понимание связи между фундаментальными взаимодействиями может пролить свет на процессы в ранней Вселенной. Возникает, например, вопрос: почему фундаментальных взаимо­действий четыре, а не одно, что казалось бы более естественным? Такой же вопрос можно задать и о фундаментальных частицах.

     Конечно, одна фундаментальная сила и одна фундаментальная частица значительно упростили бы описание Вселенной. Как мы увидим, возможно, она именно так и устроена. Согласно появившимся недавно теориям, при энергиях, характерных для ранней Вселенной, все четыре фундаментальных взаимодействия были слиты воедино. По мере расширения и остывания Вселенной, видимо, происходило разделение сил; как при понижении температуры замерзает вода, так, возможно, из единой силы могло “вымерзти” тяготение, оставив остальные три. Вскоре “вымерзло” слабое взаимо­действие, и, наконец, разделились сильное и электромагнитное. Если такая идея верна и при высоких энергиях действительно происходит объединение, исследование ранней Вселенной представляет исключительный интерес.

    К середине 60-х годов большинство астрономов приняло концепцию происхождения Вселенной в результате Большого взрыва, предполагавшую, что в начале своего су­ществования Вселенная имела бесконечно малые размеры. Многим трудно согласиться с мыслью о том, что вся масса Вселенной когда-то содержалась в ядре, меньше чем атом. Однако есть нечто еще труднее воспринимаемое в этой идее первичного ядра. Нам кажется, что оно существовало в некотором бесконечном пространстве, где и взорвалось, однако астрономы утверждают, что это не так. Вокруг этого ядра не было пространства: ядро и было Вселенной. Взорвавшись, оно создало пространство, врем и материю. Позднее мы внимательнее рассмотрим этот взрыв и увидим, как из него развилась Вселенная, но прежде вернемся назад во времени к этому взрыву.

Назад к Большому взрыву


     Чтобы вернуться к самому началу, нужно знать возраст Вселенной. А это очень сложный и спорный вопрос . Долгие годы считалось, что возраст Вселен­ ной составляет примерно 18 миллиардов лет. Эта циф­ ра приводилась в большинстве учебников, статей и популярных книг по космологии и принималась большинством ученых, так как основы­валась на рабо­ те Хаббла, которую долгие годы развивали Аллен Сэндейдж из Хейльской обсерватории и Густав Там- ман из Базеля.

Не все, однако, были согласны с таким результа том. Жерар де Вокулер из Техасского университета I работал над этой проблемой, используя сходную ме тодику, и постоянно получал результат около 10 мил лиардов лет. Сидни ван ден Берг из канадской обсер ватории в Виктории также получил близкое значение. Но почему-то эти результаты остались без внимания. В 1979 году еще трое астрономов объявили о том, что с помощью других методов получили результаты, близкие по значению к полученным Вокулером.

     Ученые, наконец, обратили внимание на эти результаты, и кое-кто задумался, — не надо ли по-новому взглянуть на проблему возраста Вселенной. Боль­ шинство продолжало придерживаться прежнего ре­ зультата — 18 миллиардов лет, но по мере того, как поя­влялись новые данные, свидетельствовавшие в поль­ зу 10 миллиардов лет, начинал раз­гораться спор. Да­ вайте немного задержимся на этом и разберемся в сути этого спора. Мы уже ви­де­­­­­­­­­­ли, что Хаббл, соотнеся расстояние до галактик с их красным смещением, предсказал рас­ ширение Вселенной. На его диаграмме особо важным представляется угол наклона прямой, проходящей че­ рез точки; значение H называется постоянной Хаббла. Важность этой по­стоянной определяется ее связью с возрастом Вселенной. Она дает нам представление о скорости расширения, и если мы повернем расшире­ ние или, что-то же самое, время вспять (пре­дположив, что оно течет в обратную сторону), то Вселенная со­ жмется. Тогда возраст Вселенной будет определяться тем временем, которое потребуется всему веществу, чтобы сжаться до размеров точки. Если бы Вселенная расширялась равномерно, то ее возраст был бы обрат­ ным величине H (1/ H ). Однако существует явное сви­ детельство в пользу того, что это не соответствует действительности: похоже, что расширение замедля­ется. Значит, чтобы уз­нать реальный возраст Вселен­ ной, нам следует помнить об этом и соответственно знать, как быстро расширение замедляется.

С помощью своей лестницы, которая помогла ему вычислить расстояние до далёких звезд, Хаббл получил в 1929 году значение Н, которое соответствовало пора­ зительно малому возрасту — 2 миллиарда лет. Пора­ зительным его можно считать потому, что результаты геологических исследований дают гораздо большее значение, и эти данные весьма надежны. Замеша­ тельство длилось недолго: Вальтер Бааде из обсерва­ тории Маунт-Вилсон вскоре нашел ошибку в методи­ ке, с помощью которой Хаббл определял расстояние. Он пользовался зависимостью период — светимость для цефеид (чем больше период цефеид, тем больше абсолютная светимость) для определения расстояния до ближайших галактик, но звезды переменной свети­ мости в этих галактиках не были обычными цефе­идами и, следовательно, указанной зависимости не подчинялись. С поправками возраст Вселенной удва­ ивался. Через несколько лет Сэндейдж заметил, что Хаббл принял скопления звезд за отдельные звезды в более отдаленных галактиках. С этими исправлени­ ями возраст еще раз удвоился.

Так возраст Вселенной был определен в 10 милли­ардов лет. Однако Сэндейджа и Таммана это не удов­ летворило. Они тщательно проанализировали работу Хаббла, расширив ее рамки. В их распоряжении были новейшая техника и методика калибровки, не говоря уже о 200-дюймовом телескопе-рефлекторе Паломар- ской обсерватории. В результате их исследований воз­ раст Вселенной еще раз удвоился и составил около 18 миллиардов лет, так что некоторое время никто не смел и подумать о новых вычислениях.

Пока Сэндейдж и Тамман проверяли и корректи­ ровали работы Хаббла, в Техасском университете усердно трудился де Вокулер. Подобно Сэндейджу, он пользовался космической лестницей, идя по сту­ пенькам вглубь ко все более слабым галактикам. Од­ нако что-то его беспокоило. Через несколько лет он внимательно изучил окружающую нас группу галак­тик, называемую местным скоплением, и обнаружил, что она является частью гораздо большей группы — скопления скоплений. Доминирующим в группе было гигантское скопление, называемое Девой (располо­женное в направлении созвездия Девы). Де Вокулер пришел к выводу, что это колоссальное скопление воздействует на нашу галактику, поэтому он и полу­ чил гораздо меньшее число, чем Сэндейдж и Тамман, которые не учли этого обстоятельства.

Однако никто не обращал на идеи де Вокулера ни малейшего внимания. Наверное, легче было считать, что мы живем в обычной области Вселенной, а де Во­ кулер уверял, что это аномальная область. Для разре­ шения противоречия требовался какой-то совершен­ но новый метод. Такой метод (который, однако, не позволил найти окончательное решение) появился в 1979 году — Марк Ааронсон из обсерватории Стю­ арда, Джон Хачра из Гарварда и Джереми Моулд из национальной обсерватории Китт-Пик объявили о том, что полученное ими значение Н лежит между значе­ ниями, предложенными де Вокулером и Сэндейджем. Однако большинство их измерений, как и измерения Сэндейджа, проводились в направлении скопления Девы. Де Вокулер предложил провести их в каком- либо другом участке неба, подальше от Девы. И ко­ нечно же, полученное значение оказалось очень близ­ ким к результату де Вокулера.

     Ааронсон с сотрудниками использовали метод, раз­ работанный намного раньше Брентом Талли из Гавай ского университета и Ричардом Фишером из Нацио­ нальной обсерватории. Талли и Фишер определяли массу галактик, проводя наблюдения на длине волны 21 см . Линия спектра, соответствующая этой длине волны при вращении галактик расширяется, т. е. чем больше скорость вращения галактики, тем шире соот­ ветствующая линия. Поскольку известно, что наибо­лее массивные, самые крупные галактики вращаются быстрее других, Талли и Фише­ру оставалось лишь из­ мерить ширину линии и тем самым определить «вес» галактики, а из это­го, в свою очередь, ее истинную яр­ кость, или светимость. Узнав светимость и определив из на­блюдений видимую яркость, легко найти рассто­ яние до галактики.

Несмотря на простоту, метод вызывает на практи­ ке ряд трудностей. Прежде всего, отнюдь не все галак­ тики повернуты к нам «лицом»; обычно они видны под каким-то углом, а значит, большая часть их света поглощается пылью. Для учета этого обстоятельства приходится вводить соответствующие поправки, что и сделали Талли с Фишером. Тем не менее их резуль-: таты подверглись суровой критике.

Заинтересовавшись этим методом, Ааронсон с со­ трудниками решили измерять не видимый свет га­ лактик, а их инфракрасное излучение, тем самым избежав необходимости введения поправок. Инфра­ красное излучение не задерживается пылью, а потому и нет необходимости делать поправку на поворот га­ лактик. В итоге ученые получили значение Я, согла­ сующееся с результатом измерения де Вокулера.

Ааронсон и его коллеги вскоре убедились, что мы в самом деле живем в аномальной области Вселенной. Мы находимся на расстоянии примерно 60 миллио нов световых лет от суперскопления в Деве и стре­ мимся к нему под действием притяжения с весьма большой скоростью. Значит, для того чтобы получить верное значение постоянной Хаббла, нужно из скоро­ сти разбегания галактик (с которой они удаляются от нас) вычесть эту скорость.

Правда, Сэндейдж и Тамман не убеждены, что мы живем в аномальной области. Их измерения, как утверждают авторы, не дают оснований считать, что мы движемся к скоплению в Деве, а следовательно, не нужно вводить соответствующую поправку. Инте­ ресно, что наша собственная скорость, измеренная Ааронсоном, не совпадает со значением, полученным де Вокулером. По мнению Ааронсона, мы движемся к скоплению в Деве не по прямой, а по спирали; такой вывод основывается на весьма сложной модели вра­ щающегося суперскопления.

Итак, возникает проблема — действительно ли мы живем в аномальной области, как свидетельствуют последние результаты, или же правы Сэндейдж и Тамман? Казалось бы, решить ее довольно легко, ведь в предыдущей главе рассказывалось о реликтовом из­ лучении, заполняющем всю Вселенную, причем в раз­ ных направлениях его температура различна. По дан­ ным таких измерений, мы движемся к созвездию Льва со скоростью примерно 600 км/с, но Лев отстоит от центра скопления в Деве примерно на 43°! Итак, одни измерения свидетельствуют, что мы движемся в на­ правлении Льва, а другие — что к Деве. Какие из них верны? Пока неизвестно.

Похоже, что мы зашли в тупик, и в вопросе о воз­ расте Вселенной — 10 ей миллиардов лет или 20? К счастью, есть еще два метода определения возраста Вселенной. Правда, и тот и другой позволяют найти лишь возраст нашей Галактики, но поскольку доволь­но хорошо из­вестно, насколько Вселенная старше Га­ лактики, эти методы весьма надежны. В первом из них используются гигантские скопления звезд, так называемые глобулярные скопления; они окружают нашу Галактику подобно тому, как пчелы окружают улей. Если построить зависимость абсолютной, или истинной, яркости от температуры поверхности звезд, входящих в такие скопления, откроется весьма инте­ ресный результат. (Такой график называется диа­ граммой Герцшпрунга — Рессела, по именам впервые построивших его ученых.)

Прежде чем рассказать о полученном результате, рассмотрим типичную диаграмму Герцшпрунга — Рес­ села. Если скопление относительно молодое, боль­ шинство точек лежит на диагонали, называемой глав­ ной последовательностью; кроме того, есть несколько точек в верхнем правом углу и совсем мало — в ниж­нем левом. На главной последовательности представ­ лены все звезды — от небольших красных карликов до голубых гигантов. Одной из особенностей этой диаграммы является то, что звезда, по мере старе­ния, сходит с главной последовательности. Самые верхние точки, соответствующие голубым гигантам, сходят первыми, а по ходу старения скопления с главной последовательности сходит все больше и больше звезд, причем всегда, начиная сверху диаграм­ мы. Это означает, что чем старше скопление, тем ко­ роче его главная последовательность. Особое значе­ние имеет то, что точка, выше которой нет звезд (она называется точкой поворота), позволяет оценить воз­раст скопления.                                                        

Второй метод заключается в наблюдении скоро­ стей распада различных радиоактивных веществ. Ме­ рой скорости этого процесса служит так называемый период полураспада — время, в течение которого рас­ падается половина ядер данндго вещества. Измеряя периоды полураспада атомов радиоактивных элемен­ тов в Солнечной системе, можно определить ее воз­ раст, а на его основе — возраст нашей Галактики. И вновь результаты указывают на то, что Галактике больше 10 миллиардов лет.

Сотрудник Чикагского университета Дэвид Шрамм и некоторые другие ученые применили ряд мето­ дов определения возраста Галактики, а затем обра­ботали результаты для получения наиболее вероят ного значения. Таким образом, они получили оценку 15-16 миллиардов лет. Но и это убедило отнюдь не всех. Гарри Шипмен из университета Делавэра недав­ но провел исследование эволюции белых карликов и определил их число в нашей Галактике; теперь он утверждает, что Млечному Пути не более 11 миллиар­ дов лет. С его выводами согласны Кен Джейнс из Бос­ тонского университета и Пьер де Марк из Йеля. Они внимательно изучили методику определения возраста глобулярных скоплений на основе графиков зависи­ мости светимость — температура и пришли к выводу, что учет погрешностей в наблюдениях звезд, а также некоторых теоретических допущений позволяет сни­зить оценку их возраста до 12 миллиардов лет.

Вот так обстоит дело. Пока с уверенностью можно утверждать лишь то, что возраст Вселенной составля­ ет от 10 до 20 миллиардов лет.

    Это означает, что около 10-20 миллиардов лет назад произошел колоссальный взрыв, в результате которого родилась наша Вселенная.

     Сейчас галактики разбегаются от нас во всех направлениях, а если представить себе, что мы движемся во времени вспять, то нам покажется, что Вселенная сжимается. Те­перь галактики расположены так далеко друг от друга, что для их сближения потре­бовалось бы около 16 миллиардов лет. Представим себе, что мы бессмертные существа, путешествующие против течения времени; для нас миллиард лет – одна минута. Мы увидим вспыхивающие и гаснущие в нашей Галактике звезды; они образуются из межз­вездных газа и пыли, проходят свой жизненный цикл и либо взрываются, разбрасывая вещество в пространство, либо медленно угасают. Издала все это похоже на рас­цвеченную огнями новогоднюю елку. Двигаясь дальше назад во времени, мы увидим, что светимость некоторых галактик немного возрастает, но постепенно все они тус­кнеют из-за того, что в них становится все больше газа и все меньше звезд. Но вот погасла последняя звезда, и не осталось ничего кроме гигантской бурлящей массы газа. Каждая из огромных спиралей газа растет в размерах, постепенно приближаясь   к другим спиралям, а потом, когда Вселенной становится лишь несколько сот миллионов лет от роду, эти колоссальные газовые сгустки рассеиваются и все пространство ока­зывается заполненным очень разреженным, но весьма однородным газом. Тем не менее, в нем все же есть заметные флуктуации плотности. Астрономы пока еще точно не знают, отчего они образовались, но, скорее всего, это было вызвано своеобразной ударной волной, пронесшейся через несколько секунд (или минут) после взрыва.

    В возрасте около 10 миллионов лет Вселенная имела температуру, которую мы сейчас называем комнатной. Может показаться, что она в то время была абсолютно пуста и черна, но на самом деле там было сильно разреженной вещество будущих галактик.

    Чем ближе к моменту рождения Вселенной, тем больше разогревается газ; за несколько миллионов лет до этого события появляется слабое свечение, которое постепенно приобретает темно-красный оттенок, - температура на этом этапе со­ставляет примерно 1000 К. Вселенная производит жутковатое впечатление, но все еще прозрачна и однородна; постепенно желтым.   И вдруг при температуре 3000 К. про­исходит нечто странное – до этого момента Вселенная была прозрачной (правда, смотреть в ней было не на что, но свет сквозь нее проходил), а теперь все заволок ослепительно сияющий желтый туман, через который ничего не видно.

     Двигаясь еще дальше назад во времени, мы увидим, что Вселенная состоит почти целиком из плотного излучения, в которое кое-где вкраплены ядра атомов. По мере роста температуры яркость тумана все возрастает. Повсюду появляются легкие частицы и их античастицы – Вселенная на этом этапе представляет собой смесь излучения, эле­ктронов, нейтронов и их античастиц. Наконец, при еще более высоких температурах, появляются тяжелые частицы их античастицы, а также черные дыры. Вселенная пре­вращается в невообразимую кашу – частицы и излучение врезаются друг в друга с колоссальной силой. Теперь она очень мала, размером с надувной мяч, а еще через долю секунды может превратиться в сингулярность. Но до того перед нами закроется “занавес”. Мы не в состоянии сказать, что в действительности произойдет в последнюю долю секунды в последнюю долю секунды, потому что не в силах заглянуть за “зана­вес”, о котором я говорил, занавес нашего неведения. При таких условиях отказывает не только общая теория относительности, но, возможно, и квантовая теория, поэтому мы и не можем сказать наверняка, появляется ли сингулярность.

 

Абсолютная сингулярность


 

    Вселенская сингулярность или состояние близкое к ней, о чёрной дыре. В отличие от черный дыр, которые имеют массу, равную массе крупной звезды; теперь же речь идет о сингулярности, содержащей всю массу Вселенной. Но помимо этого есть еще одно фундаментальное отличие. В случае сколлапсировавшей звезды был горизонт событий, в центре которого помещалась сингулярность; иными словами, черная дыра находилась где-то в нашей Вселенной. В случае вселенской   черной дыры сразу же возникают трудности –   несли вся наша Вселенная сколлапсировала в черную дыру, значит все вещество и пространство исчезли в сингулярности, то есть не останется ничего, в чем можно было бы находится – не будет Вселенной.

     Более того, в   случае вселенской черной дыры (может быть, вернее будет сказать, квазичерной дыры) нельзя быть уверенным в том, что имеешь дело с истинной сингулярностью.

    Но даже если сингулярности не было, остается вопрос, что было раньше, намного раньше. Один из ответов на него может выглядеть так: раньше была другая Вселенная, которая сколлапсировала, превратившись или почти превратившись в сингулярность, из которой затем возникла наша Вселенная. Возможно, что такие коллапсы и возрождения происходили неоднократно. Такую модель называют осциллирующей моделью Вселенной.

     Посмотрим теперь, когда отказывает общая теория относительности; это происходит через 10(-43) с после начала отсчета времени (интервал, называемый план- ковским временем). Это как раз тот момент, когда задер­ гивается «занавес»; после него во Вселенной царит пол­ ный хаос, но с помощью квантовой теории мы можем хотя бы грубо представить себе, что там происходило.

     Ранее уже упоминалось о точке зрения Стивена Хокинга, согласно которой на самой ранней стадии развития Вселенной образовывались маленькие чер­ ные дыры; он также дока­зал, что эти черные «дыроч­ ки» испаряются примерно через 10(-43) с. Отсюда вытекает, что по истечении этого интервала времени во Вселенной существовала странная «пена» из чер­ных дыр. Сотрудник Чикагского университета Дэвид Шрамм так выразился по этому поводу: «...Мы прихо­ дим к представлению о пространстве-времени как о пене из черных мини-дыр, которые внезапно появля­ ются... ре комбинируют и образуются заново». В этот момент пространство и время были совершенно не похожи на теперешние — они не обладали непрерыв­ ностью. Эта пена представляла собой по сути дела смесь пространства, времени, черных дыр и «ничего», не связанных друг с другом. О таком состоянии мы знаем очень мало.

     Температура в момент, о котором идет речь, со­ ставляла примерно 10(32) К — вполне достаточно для образования частиц. Частицы могут образовываться Посмотрим теперь, когда отказывает общая теория относительности; это происходит через 10(-43) с после начала отсчета времени (интервал, называемый план ковским временем). Это как раз тот момент, когда задер­ гивается «занавес»; после него во Вселенной царит пол­ ный хаос, но с помощью квантовой теории мы можем хотя бы грубо представить себе, что там происходило. Ранее уже упоминалось о точке зрения Стивена Хокинга, согласно которой на самой ранней стадии развития Все­ленной образовывались маленькие чер­ ные дыры; он также доказал, что эти черные «дыроч­ ки» испаряются примерно через 10(-43) с. Отсюда вытекает, что по истечении этого интервала времени во Вселенной существовала странная «пена» из чер­ных дыр. Сотрудник Чикагского университета Дэвид Шрамм так выразился по этому поводу: «...Мы прихо­ дим к представлению о пространстве-времени как о пене из черных мини-дыр, которые внезапно появля­ ются... ре комбинируют и образуются заново». В этот момент пространство и время были совершенно не похожи на теперешние — они не обладали непрерыв­ ностью. Эта пена представляла собой по сути дела смесь пространства, времени, черных дыр и «ничего», не связанных друг с другом. О таком состоянии мы знаем очень мало.

    Температура в момент, о котором идет речь, со­ ставляла примерно 10(32) К — вполне достаточно для образования частиц. Частицы могут образовываться двумя способами. В первом случае при достаточно высокой энергии (или, что-то же самое, при высокой температуре) рождаются электроны и их античасти­ цы — это так называемое рождение пар. Например, при температуре 6 миллиардов градусов столкнове­ ние двух фотонов может дать пару электрон — пози­ трон. При еще более высоких температурах могут рождаться пары протон — антипротон и так далее; в целом, чем тяжелее частица, тем большая энергия требуется для ее рождения, т. е. тем выше должна быть температура.

Раньше мы видели, что есть и второй способ обра­ зования пар частиц — они могут появляться сразу же за горизонтом событий черных мини-дыр под дейст­ вием приливных сил. Мы также говорили о том, что при испарении черных мини-дыр рождались ливни частиц, а поскольку вселенская черная дыра подобна мини-дыре, там происходило то же самое.

Итак, есть два способа рождения частиц. Какой же из них следует считать более важным? По мнению ас-1трономов, основная масса частиц образовалась за счет наличия высоких энергий, так как только на самом   раннем этапе приливные силы были настолько вели ки, чтобы приводить к рождению частиц в значитель ных количествах. Однако многое еще здесь неясно, и впоследствии может оказаться, что второй метод также играет существенную роль.

Краткий период времени, следующий непосредст венно за моментом 10(-43) с, обычно называют кван товой эпохой.

    В эту эпоху все четыре фундаменталь­ ных взаимодействия были объединены. Вскоре после момента 10(-43) с единое поле распалось, и от него отделилась первая из четырех сил. Позднее по очере ди отделились другие силы, которые изменялись по   величине. В конце концов получились четыре знако мых нам взаимодействия.

Раздувание


Одна из трудностей, на которую наталкивается традиционная теория Большого взрыва, — необходи­ мость объяснить, откуда берется колоссальное коли­ чество энергии, требующееся для рождения частиц. Не так давно внимание ученых привлекла видоизме ненная теория Большого взрыва, которая предлагает I ответ на этот вопрос. Она носит название теории раз дувания и была предложена в 1980 году сотрудником Массачусетского технологического института Аланом Гутом. Основное отличие теории раздувания от тра­ диционной теории Большого взрыва заключается в описании периода с 10(-35) до 10(-32) с. По теории Гута примерно через 10(-35) с Вселенная переходит в состояние «псевдовакуума», при котором ее энергия исключительно велика. Из-за этого происходит чрез­ вычайно быстрое расширение, гораздо более быстрое, чем по теории Большого взрыва (оно называется раз­ дуванием). Через 10(-35) с после образования Все­ ленная не содержала ничего кроме черных мини-дыр и «обрывков» пространства, поэтому при резком раз­ дувании образовалась не одна вселенная, а множест­ во, причем некоторые, возможно, были вложены друг в друга. Каждый из участков пены превратился в от­ дельную вселенную, и мы живем в одной из них. От­ сюда следует, что может существовать много других вселенных, недоступных для нашего наблюдения.

Хотя в этой теории удается обойти ряд трудностей традиционной теории Большого взрыва, она и сама не свободна от недостатков. Например, трудно объяс­ нить, почему, начавшись, раздувание в конце концов прекращается. От этого недостатка удалось освобо­ диться в новом варианте теории раздувания, появив­ шемся в 1981 году, но в нем тоже есть свои трудности.

Эпоха адронов


     Через 10(-23) с Вселенная вступила в эпоху адро нов, или тяжелых частиц. Поскольку адроны участву­ ют в сильных взаимодействиях, эту эпоху можно на­ звать эпохой сильных взаимодействий. Температура была достаточно высока для того, чтобы образовыва­ лись пары адронов: мезоны, протоны, нейтроны и т. п., а также их античастицы. Однако на заре этой эпохи температура была слишком высока, и тяжелые части­ цы не могли существовать в обычном виде; они при­ сутствовали в виде своих составляющих — кварков. На данном этапе Вселенная почти полностью состоя­ла из кварков и антикварков. Сейчас свободные квар­ ки не наблюдаются. Из современных теорий следует, что они попали в «мешки» и не могут их покинуть. Однако некоторые ученые считают, что где-то еще должны остаться кварки, дошедшие до нас из тех дале­ ких времен. Возможно, они столь же многочисленны, как атомы золота, но пока обнаружить их не удалось. В соответствии с этой теорией, после того как тем­ пература достаточно упала (примерно через 10(-6) с), кварки быстро собрались в «мешки». Такой процесс носит название кваркадронного перехода. В то время Вселенная состояла в основном из мезонов, нейтро­ нов, протонов, их античастиц и фотонов; кроме того, могли присутствовать более тяжелые частицы и не­ много черных дыр. При этом на каждую частицу при­ходилась античастица, они при соударении аннигили­ ровали, превращаясь в один или несколько фотонов. Фотоны же, в свою очередь, могли образовывать пары частиц, в результате чего Вселенная, пока пары рож­ дались и аннигилировали примерно с одинаковой ско­ ростью, пребывала в равновесном состоянии. Однако по мере расширения температура падала и рождалось все меньше и меньше пар тяжелых частиц. Постепенно число аннигиляции превысило число рождений, и в результате почти все тяжелые частицы исчезли. Если бы число частиц и античастиц было в точности одинаково, то они исчезли бы полностью. На самом деле это не так, и свидетельство тому — наше суще­ ствование.

Наконец температура упала настолько, что пары тяжелых частиц уже не могли рождаться. Энергии хватало лишь для образования легких частиц (лепто нов). Вселенная вступила в эпоху, когда в ней содер­ жались в основном лептоны и их античастицы.

Эпоха лептонов


Примерно через сотую долю секунды после Боль­шого взрыва, когда температура упала до 100 милли­ ардов градусов, Вселенная вступила в эпоху лептонов. Теперь она походила на густой суп из излучения (фотонов) и лептонов (в основном электронов, по­ зитронов, нейтрино и антинейтрино). Тогда также на­ блюдалось тепловое равновесие, при котором элек трон-позитронные пары рождались и аннигилировали примерно с одинаковой скоростью. Но кроме того, во Вселенной находились оставшиеся от эпохи адро нов в небольших количествах протоны и нейтроны — примерно по одному на миллиард фотонов. Однако в свободном состоянии нейтроны через 13 мин распа­ даются на протоны и электроны, т. е. происходил еще один важный процесс — распад нейтронов. Правда, температура в начале этой эпохи была еще достаточ­ но высока для рождения нейтронов при соударении электронов с протонами, поэтому равновесие сохра­ нялось. А вот когда температура упала до 30 миллиар­ дов градусов, электронам уже не хватало энергии для образования нейтронов, поэтому они распадались в больших количествах.

Еще одно важное событие эпохи лептонов — разде­ ление и освобождение нейтрино. Нейтрино и анти­ нейтрино образуются в реакциях с участием протонов и нейтронов. Когда температура была достаточно вы­ сока, все эти частицы были связаны между собой, а при понижении температуры ниже определенного критического значения произошло их разделение, и все частицы свободно разлетелись в пространство. По мере расширения Вселенной их температура па­ дала до тех пор, пока не достигла значения около 2 К. До настоящего времени обнаружить эти частицы не удалось.

Эпоха излучения


Через несколько секунд после Большего взрыва, когда температура составляла около 10 миллиардов градусов, Вселенная вступила в эпоху излучения. В начале этой эпохи было еще довольно много лепто­ нов, но при понижении температуры до 3 миллиардов градусов (порогового значения для рождения пар леп­ тонов) они быстро исчезли, испустив множество фо­ тонов. В то время Вселенная состояла почти полно­ стью из фотонов.

В эпоху излучения произошло событие исключи­ тельной важности — в результате синтеза образо­ валось первое ядро. Это как раз то событие, которое пытался объяснить Гамов; о нем речь шла раньше. Примерно через три минуты после начала отсчета времени, при температуре около миллиарда градусов, Вселенная уже достаточно остыла для того, чтобы столкнувшиеся протон и нейтрон соединились, обра­ зовав ядро дейтерия (более тяжелой разновидности водорода). При соударении двух ядер дейтерия об­ разовывались ядра гелия. Так за очень короткое время, примерно за 200 мин, около 25 % вещества Вселенной превратилось в гелий. Помимо того, пре­ вращение водорода в гелий происходит в недрах звезд, но там образуется лишь около 1 % всей массы гелия. В эту эпоху возникли также другие элементы: немного трития и лития, но более тяжелые ядра обра­ зоваться не могли. Поскольку все, о чем здесь шла речь, естественно, относится к области теории, чита­ тель вправе усомниться: а так ли это в действительно­ сти? Видимо, да, ведь теория прекрасно согласуется с наблюдениями, поэтому ей можно доверять. Напри­ мер, согласно этой теории гелий должен составлять около 25 % вещества во Вселенной, что подтверждает­ ся наблюдением.

Фоновое космическое излучение


Вселенная продолжала расширяться и охлаждаться в течение нескольких тысяч лет. Тогда она состояла в основном из излучения с примесью некоторых частиц (нейтронов, протонов, электронов, нейтрино и ядер простых атомов). Это была довольно тоскливая Все­ ленная, непрозрачная из-за густого светящегося тума­ на, и в ней почти ничего не происходило. Непрозрач­ ность вызывалась равновесием между фотонами и веществом; при этом фотоны были как бы привязаны к веществу. Наконец, при температуре 3000 К в ре­ зультате объединения электронов и протонов образо­ вались атомы водорода, так что фотоны смогли ото­ рваться от вещества. Как раньше нейтрино, так теперь фотоны отделились и унеслись в пространство.

Наверное, это напоминало чудо — густой туман внезапно рассеялся и Вселенная стала прозрачной, хотя и ярко красной, так как температура излучения была еще довольно высока (чуть ниже 3000 К). Но по­ степенно она падала — сначала до 1000 К, затем до 100 К и наконец достигла нынешнего значения 3 К.

Существование такого фонового излучения пред­сказал в 1948 году Г. Гамов, но в своих рассуждениях он допустил массу ошибок, как численных, так и смысловых. Несколько лет спустя его студент испра­ вил эти ошибки и рассчитал, что температура фо­ нового излучения сейчас должна быть около 5 К. Считалось, однако, что это излучение обнаружить не удастся, в частности, из-за света звезд. Вот почему прошло 17 лет, прежде чем фоновое излучение было зарегистрировано.

В начале 60-х годов компания «Белл телефон» по­ строила в Холмделе, шт. Нью-Джерси, специальный радиотелескоп для приема микроволнового излуче­ ния. Он использовался для обеспечения связи со спутником «Телстар». Двое работавших на нем уче­ ных, Арно Пензиас и Роберт Уилсон, решили также исследовать с его помощью микроволновое излучение нашей Галактики.

Однако до начала исследований им нужно было обнаружить и устранить все возможные помехи как от самого телескопа, так и от окружающих наземных источников. Ученые решили поработать на волне 7,35 см , но вскоре обнаружили, что на ней постоянно присутствует какой-то шум. Несмотря на все усилия, избавиться от него не удавалось, хотя вначале ис­ следователям казалось, что это не составит труда. Шум так мешал работе, что Пензиас и Уилсон решили проверить, не является ли его источником само небо, Как ни странно, но оказалось, что это так. Куда бы ученые не наводили телескоп, шум не исчезал.

Они и не подозревали о том, что совсем рядом, в Принстонском университете, два физика, Роберт Дикке и Джим Пиблз, обсуждали возможность нали­ чия во Вселенной излучения, дошедшего до нас с момента Большого взрыва. Пиблз рассчитал, что его температура должна быть около 5 К, и ученые обрати­ лись к своим коллегам П. Роллу и Д. Уилкинсону с просьбой попробовать обнаружить это излучение. Как видно, никто из них не слышал о предсказании Гамова, сделанном много лет назад.

     Пензиас узнал об идеях Дикке и позвонил ему, чтобы сообщить о регистрации «шума», — похоже, это как раз то, что он ищет. Дикке приехал в Холмдел, и вскоре стало ясно, что помехи действительно пред­ставляют собой искомое излучение. Ученые опубли ковали полученные результаты, не упомянув ни Гамо­ ва, ни его студента. Когда Гамов познакомился с этой публикацией, он направил Дикке весьма сердитое письмо. Позднее Пензиас и Уилсон были удостоены за свое открытие Нобелевской премии.

Естественно, требовались дополнительные доказа­ тельства того, что зарегистрированный шум представ­ лял собой фоновое космическое излучение, ведь Пен­ зиас и Уилсон получили на кривой излучения лишь одну точку при длине волны 7,35 см . Ранее мы виде­ ли, что любое нагретое тело излучает энергию, а кри­ вая излучения (зависимость количества излучаемой энергии от длины волны) имеет строго определенный вид. Если какое-либо тело полностью поглощает па­дающую на него энергию излучения, то такая кривая носит название кривой излучения черного тела. При плавном переходе от больших длин волн к мень­ шим кривая поднимается вверх, проходит через пик и затем резко опускается вниз. Согласно расчетам, кривая, соответствующая фоновому космическому излучению, должна была бы иметь ту же форму, что и для черного тела.

Пензиас и Уилсон получили первую точку на кри­ вой, а вскоре Ролл и Уилкинсон поставили вторую. Узнав об этом, другие ученые стали проводить допол­нительные измерения на различных длинах волн. Бы­ ла здесь, однако, одна трудность. Дело в том, что точ­ ки ложились по одну сторону пика, а важно было получить их и по другую сторону, чтобы убедиться, что кривая идет так, как нужно. Атмосфера не пропу­ скает излучение таких длин волн, т. е. на Земле про­ делать эти измерения невозможно. Каково же было потрясение ученых, когда точка, полученная установ ленной на ракете аппаратурой, оказалась гораздо вы­ ше расчетной кривой. И каково же было их облегче­ ние, когда выяснилось, что детектор случайно зареги­ стрировал тепловое излучение двигателя ракеты. Последующие измерения подтвердили, что за пиком действительно идет спад, как и следует из теории. Та­ ким образом, с определенной долей уверенности мож­ но утверждать, что это излучение дошло до нас от вре­ мен Большого взрыва.

В первом приближении получалось, что фоновое (или, как его еще называют, реликтовое) излучение имеет одинаковые характеристики во всех направле­ ниях, т. е. изотропно. Но не опровергнут ли этот ре­ зультат более точные измерения? Поставим и такой вопрос: а что если излучение анизотропно (различно в разных направлениях)? Немного поразмыслив, мы поймем, что если температура реликтового излучения выше в каком-то одном направлении, то, значит, мы движемся в направлении роста температуры. Это как с туманом, — если он густеет, значит, мы движемся в ту сторону, где он плотнее, и наоборот, — если он ре­ деет, мы движемся в противоположную сторону. Пер­ вые измерения, выполненные в 1969 и 1971 годах, да­ вали основания предполагать наличие анизотропии, поэтому две группы ученых, одна из Калифорнийско­ го университета в Беркли, а другая из Принстона, ре­ шили провести детальные измерения за пределами ат­ мосферы.

Группа исследователей из Беркли выполнила пер­ вые измерения в 1976 году при помощи самолета- шпиона У-2. И в самом деле, оказалось, что имеется небольшая анизотропия, по величине которой уда­ лось установить, что мы движемся в направлении созвездия Льва со скоростью около 600 км/с. Позже выяснилось, что туда летит не только Солнечная сис­ тема, но и вся наша Галактика, а также некоторые из соседних галактик.

Эпоха галактик


После отрыва излучения от вещества Вселенная по-прежнему состояла из довольно однородной смеси частиц и излучения. В ней уже содержалось вещество, из которого впоследствии образовались галактики, но пока его распределение оставалось в основном рав­ номерным. Известно, однако, что позже наступил этап неоднородности, иначе сейчас не было бы галактик. Но откуда же взялись флуктуации, приведшие к по­ явлению галактик?

Астрономы полагают, что они проявились очень рано, практически сразу же после Большого взрыва. Что их вызвало? Точно неизвестно и, может быть, ни­ когда не будет известно наверняка, но они каким-то образом появились практически в самый первый мо­ мент. Возможно, поначалу они были довольно велики, а затем сгладились, а может быть, наоборот, увеличи­ вались с течением времени. Известно, однако, что по окончании эпохи излучения эти флуктуации стали расти. С течением времени они разорвали облака час­ тиц на отдельные части. Эти гигантские клубы веще­ства расширялись вместе с Вселенной, но постепен­ но стали отставать. Затем под действием взаимного притяжения частиц начало происходить их уплотне­ ние. Большинство этих образований поначалу мед­ ленно вращалось, и по мере уплотнения скорость их вращения возрастала.

Турбулентность в каждом из фрагментов была весьма значительна, и облако дробилось еще больше, до тех пор, пока не остались области размером со звез­ ду. Они уплотнялись и образовывали так называемые протозвезды (облако в целом называется протогалак тикой). Затем стали загораться звезды и галактики приобрели свой нынешний вид.

Эта картина довольно правдоподобна, но все же остается ряд нерешенных проблем. Как, например, выглядели ранние формы галактик (их обычно назы­ вают первичными галактиками)? Так как пока ни одна из них не наблюдалась, сравнивать теоретические по­строения не с чем.

Есть и другие трудности. Задумаемся над тем, что мы видим, вглядываясь в глубины космоса. Ясно, что при этом мы заглядываем в прошлое. Почему? Да пото­ му, что скорость света не бесконечна, а имеет предел; для того чтобы дойти до нас от удаленного объекта, све­ту требуется некоторое время. Например, галактику, на­ ходящуюся от нас на расстоянии 10 миллионов свето­ вых лет, мы видим такой какой она была 10 миллионов лет назад; галактику на расстоянии 3 миллиарда свето­ вых лет мы наблюдаем отстоящей от нас во времени на 3 миллиарда лет. Всматриваясь еще дальше, мы ви­ дим все более тусклые галактики, и наконец они ста­новятся вовсе не видны — за определенной границей можно наблюдать только так называемые радиогалак­ тики, которые, похоже, во многих случаях находятся в состоянии взрыва. За этой границей расположены особенно странные галактики — мощные источники радиоизлучения с чрезвычайно плотными ядрами.

Наконец, на самой окраине Вселенной можно разглядеть только квазары. Их обнаружили в начале 60-х годов, и с тех пор они остаются для нас загадкой. Они испускают больше энергии, чем целая галактика (а ведь в нее входят сотни миллиардов звезд), при весьма малом размере — не больше Солнечной систе­ мы. По сравнению с количеством излучаемой энергии такой размер просто смехотворен. Как может столь малый объект давать столько энергии? На эту тему в последние годы много рассуждали, в основном при­ менительно к черным дырам, но ответа пока нет. В со­ответствии с наиболее приемлемой моделью, квазар — это плотный сгусток газа и звезд, находящийся по­ близости от черной дыры. Энергия выделяется, когда газ и звездное вещество поглощаются черной дырой. Важно помнить, что мы видим все эти объекты та­ кими, какими они были давным-давно, когда Вселен­ ной было, скажем, всего несколько миллионов лет от роду. Поскольку на самой окраине видны только квазары, напрашивается вывод, что они есть самая ранняя форма галактик. Ближе к нам находятся ра­ диогалактики, так, может быть, они произошли от квазаров? Еще ближе обычные галактики, которые, стало быть, произошли от радиогалактик? Получает­ ся как бы цепь эволюции: квазары, радиогалактики и обычные галактики. Хотя такие рассуждения кажут­ ся вполне разумными, большинство астрономов с ни­ ми не соглашается. Одно из возражений — разница в размерах между квазарами и галактиками. Следует, однако, упомянуть, что недавно вокруг некоторых квазаров обнаружены туманности. Возможно, эти ту­ манности затем конденсируются в звезды, которые объединяются в галактики. Из-за упомянутой выше и других трудностей большая часть астрономов пред­ почитает считать, что и на самых дальних рубежах есть первичные галактики, но они слишком слабы и потому не видны. Более того, недавно обнаружены новые свидетельства, подтверждающие такое предпо­ ложение, — зарегистрировано несколько галактик, на­ ходящихся на 2 миллиарда световых лет дальше, чем самая дальняя из известных галактик. Они настолько слабы, что для получения их изображения на фото­ пластинке понадобилась экспозиция 40 ч.

Мы рассмотрели теории возникновение Вселенной. Теперь рассмотрим ее возможную дальнейшую судьбу.
  1   2   3


написать администратору сайта