Главная страница
Навигация по странице:

  • ОСНОВНЫЕ ПОНЯТИЯ

  • История развития нейронных сетей

  • УСТРОЙСТВО НЕЙРОННЫХ СЕТЕЙ

  • ОБУЧЕНИЕ СЕТИ И ПРОВЕРКА АДЕКВАТНОСТИ

  • Классификация нейронных сетей

  • Реферат на тему нейронные сети. Нейронные сети


    Скачать 0.53 Mb.
    НазваниеНейронные сети
    АнкорРеферат на тему нейронные сети
    Дата15.09.2021
    Размер0.53 Mb.
    Формат файлаdocx
    Имя файлаobrazets.docx
    ТипРеферат
    #232668


    Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

    Ордена Трудового Красного Знамени федеральное государственное

    бюджетное образовательное учреждение высшего образования

    Московский Технический Университет Связи и Информатики

    (МТУСИ)

    Кафедра Сетевые информационные технологии и сервисы

    Дисциплина ВВЕДЕНИЕ В ПРОФЕССИЮ

    РЕФЕРАТ

    На тему «Нейронные сети»

    Выполнил:

    Студент группы БСТ 2103

    Таланкин Иван Сергеевич

    Проверила:

    _______ Комкова М.Г.

    Москва 2020

    Содержание

    Введение

    1. Основные понятие

    2. История развития нейронных сетей

    3. Устройство нейронных сетей

    4. Обучение сети и проверка адекватности

    5. Однослойные и многослойные сети прямого распространения
    Заключение

    ВВЕДЕНИЕ

    Нейронные сети, или, точнее, искусственные нейронные сети, представляют собой технологию, уходящую корнями во множество дисциплин: нейрофизиологию, математику, статистику, физику, компьютерные науки и технику. Они находят свое применение в таких разнородных областях, как моделирование, анализ временных рядов, распознавание образов, обработка сигналов и управление благодаря одному важному свойству – способности обучаться на основе данных при участии учителя или без его вмешательства.

    Исследования по искусственным нейронным сетям связаны с тем, что способ обработки информации человеческим мозгом в корне отличается от методов, применяемых обычными цифровыми компьютерами. Мозг представляет собой чрезвычайно сложный, нелинейный, параллельный компьютер. Он обладает способностью организовывать свои структурные компоненты, называемые нейронами , так, чтобы они могли выполнять конкретные задачи (такие как распознавание образов, обработку сигналов органов чувств, моторные функции) во много раз быстрее, чем могут позволить самые быстродействующие современные компьютеры.

    Понятие развития нейронов связано с понятием пластичности мозга – способности настройки нервной системы в соответствии с окружающими условиями. Именно пластичность играет самую важную роль в работе нейронов в качестве единиц обработки информации в человеческом мозге. Аналогично, в искусственных нейронных сетях работа проводится с искусственными нейронами. В общем случае нейронная сеть представляет собой машину, моделирующую способ обработки мозгом конкретной задачи. Эта сеть обычно реализуется с помощью электронных компонентов или моделируется программой, выполняемой на цифровом компьютере. Предметом рассмотрения реферата является важный класс нейронных сетей, осуществляющих вычисления с помощью процесса обучения .

    ОСНОВНЫЕ ПОНЯТИЯ

    Нейронная сеть – это громадный распределенный параллельный процессор, состоящий из элементарных единиц обработки информации, накапливающих экспериментальные знания и предоставляющих их для последующей обработки. Нейронная сеть сходна с мозгом с двух точек зрения.
    Использование нейронных сетей обеспечивает следующие полезные свойства систем:

    1. Адаптивность

    2. Нелинейность

    3. Очевидность ответа

    4. Контекстная информация

    5. Отказоустойчивость

    6. Маштабируемость



    Совершенно очевидно, что свою силу нейронные сети черпают, во первых, из распараллеливания обработки информации и, во вторых, из способности самообучаться, т.е. создавать обобщения. Под термином обобщение понимается способность получать обоснованный результат на основании данных, которые не встречались в процессе обучения. Эти свойства позволяют нейронным сетям решать сложные (масштабные) задачи, которые на сегодняшний день считаются трудно разрешимыми. Однако на практике при автономной работе нейронные сети не могут обеспечить готовые решения. Их необходимо интегрировать в сложные системы. В частности, комплексную задачу можно разбить на последовательность относительно простых, часть из которых может решаться нейронными сетями.

    История развития нейронных сетей

    На заре развития электронно-вычислительной техники в середине XX века среди ученых и конструкторов еще не существовало единого мнения он том, как должна быть реализована и по какому принципу работать типовая электронно-вычислительная машина. Это сейчас мы с вами изучаем в курсах основ информатики архитектуру машины фон Неймана, по которой построены практически все существующие сегодня компьютеры. При этом в тех же учебниках ни слова не говорится о том, что в те же годы были предложены принципиально иные архитектуры и принципы действия компьютеров. Одна из таких схем получила название нейросетевого компьютера, или просто нейросети. Главные части нервной клетки – это ее тело, содержащее ядро и другие органеллы, единственный аксон, передающий импульсы от клетки, и дендриты, к которым приходят импульсы от других клеток. Первый интерес к нейросетям был обусловлен пионерской работой МакКаллока и Питса, изданной в 1943 году, где предлагалась схема компьютера, основанного на аналогии с работой человеческого мозга. Они создали упрощенную модель нервной клетки – нейрон. Мозг человека состоит из белого и серого веществ: белое – это тела нейронов, а серое – это соединительная ткань между нейронами, или аксоны и дендриты. Мозг состоит примерно из 10^11 нейронов



    Главные части нервной клетки – это ее тело, содержащее ядро и другие органеллы, единственный аксон, передающий импульсы от клетки, и дендриты, к которым приходят импульсы от других клеток связанных между собой. Каждый нейрон получает информацию через свои дендриты, а передает ее дальше только через единственных аксон, разветвляющийся на конце на тысячи синапсов. Простейший нейрон может иметь до 10000 дендритов, принимающих сигналы от других клеток.

    Таким образом, мозг содержит примерно 10^15 взаимосвязей. Если учесть, что любой нейрофизиологический процесс активизирует сразу множество нейронов, то можно представить себе то количество информации или сигналов, которое возникает в мозгу. Нейроны взаимодействуют посредством серий импульсов, длящихся несколько миллисекунд, каждый импульс представляет собой частотный сигнал с частотой от нескольких единиц до сотен герц. Это невообразимо медленно по сравнению с современными компьютерами, но в тоже время человеческий мозг гораздо быстрее машины может обрабатывать аналоговую информацию, как-то: узнавать изображения, чувствовать вкус, узнавать звуки, читать чужой почерк, оперировать качественными параметрами. Все это реализуется посредством сети нейронов, соединенных между собой синапсами. Другими словами, мозг — это система из параллельных процессоров, работающая гораздо эффективнее, чем популярные сейчас последовательные вычисления.
    Технология последовательных вычислений подошла к пределу своих технических возможностей, и в настоящее время остро стоит проблема развития методов параллельного программирования и создания параллельных компьютеров. Так что, может быть, нейросети являются только очередным шагом в этом направлении.

    УСТРОЙСТВО НЕЙРОННЫХ СЕТЕЙ

    Искусственным нейроном называется простой элемент, сначала вычисляющий взвешенную сумму V входных величин хi:



    Здесь N – размерность пространства входных сигналов. Затем полученная сумма сравнивается с пороговой величиной W0, вслед за чем вступает в действие нелинейная функция активации f. Коэффициенты {Wi} во взвешенной сумме обычно называют синаптическими коэффициентами или весами. Саму же взвешенную сумму V мы будем называть потенциалом нейрона i. Выходной сигнал тогда имеет вид f(V). Величину порогового барьера можно рассматривать как еще один весовой коэффициент при постоянном входном сигнале. В этом случае мы говорим о расширенном входном пространстве: нейрон с N-мерным входом имеет N+1 весовой коэффициент. Если ввести в уравнение пороговую величину W0, то оно перепишется так:



    В зависимости от способа преобразования сигнала и характера активации возникают различные виды нейронных структур. Существуют детерминированные нейроны, когда активизирующая функция однозначно вычисляет выход по входу, и вероятностные нейроны, состояние которых в момент t есть случайная функция потенциала и состояния в момент t-1. Далее речь пойдёт о детерминированных нейронах

    ОБУЧЕНИЕ СЕТИ И ПРОВЕРКА АДЕКВАТНОСТИ

    В процессе обучения сеть в определённом порядке просматривает обучающую выборку. Порядок просмотра может быть последовательным, случайным и т. д. Некоторые сети, обучающиеся без учителя (например, сети Хопфилда), просматривают выборку только один раз. Другие (например, сети Кохонена), а также сети, обучающиеся с учителем, просматривают выборку множество раз, при этом один полный проход по выборке называется эпохой обучения. При обучении с учителем набор исходных данных делят на две части — собственно обучающую выборку и тестовые данные; принцип разделения может быть произвольным. Обучающие данные подаются сети для обучения, а проверочные используются для расчёта ошибки сети (проверочные данные никогда для обучения сети не применяются). Таким образом, если на проверочных данных ошибка уменьшается, то сеть действительно выполняет обобщение. Если ошибка на обучающих данных продолжает уменьшаться, а ошибка на тестовых данных увеличивается, значит, сеть перестала выполнять обобщение и просто «запоминает» обучающие данные. Это явление называется переобучением сети или оверфиттингом. В таких случаях обучение обычно прекращают. В процессе обучения могут проявиться другие проблемы, такие как паралич или попадание сети в локальный минимум поверхности ошибок. Невозможно заранее предсказать проявление той или иной проблемы, равно как и дать однозначные рекомендации к их разрешению.

    Всё выше сказанное относится только к итерационным алгоритмам поиска нейросетевых решений. Для них действительно нельзя ничего гарантировать и нельзя полностью автоматизировать обучение нейронных сетей. Однако, наряду с итерационными алгоритмами обучения, существуют не итерационные алгоритмы, обладающие очень высокой устойчивостью и позволяющие полностью автоматизировать процесс обучения.

    Проверка адекватности обучения


    Даже в случае успешного, на первый взгляд, обучения сеть не всегда обучается именно тому, чего от неё хотел создатель. Известен случай, когда сеть обучалась распознаванию изображений танков по фотографиям, однако позднее выяснилось, что все танки были сфотографированы на одном и том же фоне. В результате сеть «научилась» распознавать этот тип ландшафта, вместо того, чтобы «научиться» распознавать танки. Таким образом, сеть «понимает» не то, что от неё требовалось, а то, что проще всего обобщить.

    Тестирование качества обучения нейросети необходимо проводить на примерах, которые не участвовали в её обучении. При этом число тестовых примеров должно быть тем больше, чем выше качество обучения. Если ошибки нейронной сети имеют вероятность близкую к одной миллиардной, то и для подтверждения этой вероятности нужен миллиард тестовых примеров. Получается, что тестирование хорошо обученных нейронных сетей становится очень трудной задачей.

    Классификация нейронных сетей



    Однослойные и многослойные сети прямого распространения

    Однослойные сети прямого распространения



    В многослойной нейронной сети нейроны располагаются по слоям. В простейшем случае в такой сети существует входной слой узлов источника, информация от которого передается на выходной слой нейронов, но не наоборот. Такая сеть называется сетью прямого распространения или ацикличной сетью. На рисунке показана структура такой сети для случая четырех узлов в каждом из слоев. Такая нейронная сеть называется однослойной, при этом под единственным слоем подразумевается слой вычислительных элементов.

    Многослойные сети прямого распространения



    Другой класс нейронных сетей прямого распространения характеризуется наличием одного или нескольких скрытых слоев, узлы которых называются скрытыми нейронами. Функция последних заключается в посредничестве между внешним входным сигналом и выходом нейронной сети. Добавляя один или несколько скрытых слоев, мы можем выделить статистики высокого порядка. Такая сеть позволяет выделять глобальные свойства данных с помощью локальных соединений за счет наличия дополнительных синаптических связей и повышения уровня взаимодействия нейронов. Способность скрытых нейронов выделять статистические зависимости высокого порядка особенно существенна, когда размер входного слоя достаточно велик.

    Рекуррентные сети



    Рекуррентная нейронная сеть отличается от сети прямого распространения наличием по крайней мере одной обратной связи. Например, рекуррентная сеть может состоять из единственного слоя нейронов, каждый из которых направляет свой выходной сигнал на входы всех остальных нейронов слоя.



    Наличие обратных связей в сетях, показанных на рисунках, оказывает непосредственное влияние на способность таких сетей к обучению и на их производительность. Более того, обратная связь подразумевает использование элементов единичной задержки ( обозначены как zl), что приводит к нелинейному динамическому поведению, если, конечно, в сети содержатся нелинейные нейроны.

    ЗАКЛЮЧЕНИЕ

    Нейрокомпьютеры являются перспективным направлением развития современной высокопроизводительной вычислительной техники, а теория нейронных сетей и нейроматематика представляют собой приоритетные направления российской вычислительной науки. Основой активного развития нейрокомпьютеров является принципиальное отличие нейросетевых алгоритмов решения задач от однопроцессорных, малопроцессорных, а также транспьютерных. Для данного направления развития вычислительной техники не так важен уровень развития отечественной микроэлектроники, поэтому оно позволяет создать основу построения российской элементной базы суперкомпьютеров.

    В заключение необходимо отметить, что использование нейронных сетей во всех областях человеческой деятельности, в том числе в области финансовых приложений, движется по нарастающей, отчасти по необходимости и из-за широких возможностей для одних, из-за престижности для других и из-за интересных приложений для третьих. Не следует пугаться того, что появление столь мощных и эффективных средств перевернет финансовый рынок, или "отменит" традиционные математические и эконометрические методы технического анализа, или сделает ненужной работу высококлассных экспертов - говорить об этом, мягко говоря, преждевременно. В качестве нового эффективного средства для решения самых различных задач нейронные сети просто приходят - и используются теми людьми, которые их понимают, которые в них нуждаются и которым они помогают решать многие профессиональные проблемы. Не обязательно "насаждать" нейронные сети, или пытаться доказать их неэффективность путем выделения присущих им особенностей и недостатков - нужно просто относиться к ним как к неизбежному следствию развития вычислительной математики, информационных технологий и современной элементной базы.

    Список использованных источников:

    https://www.bibliofond.ru/view.aspx?id=785939#text

    https://works.doklad.ru/view/9sj_WRTjSBg.html

    https://ru.wikipedia.org/wiki/Нейронная_сеть#Обучение_сети

    https://otherreferats.allbest.ru/programming/00010322_0.html


    написать администратору сайта