Главная страница
Навигация по странице:

  • Структурно-функциональная организация эукариотических клеток. Компартментация как способ изоляции разнонаправленных процессов (химических реакций) внутри клетки.

  • Плазматическая (цитоплазматическая)

  • Цитоплазматическая (эндоплазматическая)

  • Строение эукариотической клетки: поверхностный аппарат, протоплазма (ядро и цитоплазма).

  • ПРОТОПЛАЗМА

  • Поверхностный аппарат клетки. Строение и функции. Биологические мембраны. Их строение и функции. Транспорт веществ: активный и пассивный.

  • Плазматическая мембрана, или плазмалемма

  • Пассивный транспорт

  • Протоплазма. Организация и функции. Роль изменения агрегатного состояния цитоплазмы в жизнедеятельности клетки (золь–гель переходы). Понятие о биоколлоиде.

  • Ядро как основной регуляторный компонент клетки. Его строение и функции.

  • . Не органоид, а компонент клетки.

  • ответы по биологии на экзамен 2015. Организация жизни на Земле. Биология клетки. Размножение. Генетика


    Скачать 2.37 Mb.
    НазваниеОрганизация жизни на Земле. Биология клетки. Размножение. Генетика
    Анкорответы по биологии на экзамен 2015.doc
    Дата14.05.2017
    Размер2.37 Mb.
    Формат файлаdoc
    Имя файлаответы по биологии на экзамен 2015.doc
    ТипДокументы
    #7544
    страница3 из 25
    1   2   3   4   5   6   7   8   9   ...   25

    Поток энергии обеспечивается механизмами энергообеспечения — брожениемфото — или хемосинтезом, дыханиемДыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ),электрическую, механическую, регуляторнуюАнаэробный гликолиз— процесс бескилородного расщепления глюкозы. Фотосинтез— механизм преобразования энергии солнечного света в энергию химических связей органических веществ.

    Дыхательный обмен одновременно составляет ведущее звено потока веществ,объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.

    Биологически активные вещества — гормоны, ферменты, адреналин, серотонин и т. д.


    1. Структурно-функциональная организация эукариотических клеток. Компартментация как способ изоляции разнонаправленных процессов (химических реакций) внутри клетки.

    Строение клеток животных и растений характеризуется принципиальным сходством, но форма, размеры и масса их чрезвычайно разнообразны и зависят от того, является ли организм одноклеточным или многоклеточным. Эукариотические клетки по сравнению с прокариотическими обладают более сложной системой восприятия веществ из окружающей среды, без чего невозможна их жизнь. Существуют и другие различия между эукариотическими и прокариотическими клетками. Форма клеток бывает самой разнообразной и часто зависит также от выполняемых ими функций. Некоторые виды клеток характеризуются значительными размерами. КОМПАРТМЕНТАЦИЯ— разграничение фонда ионов и низкомолекулярных соединений в живой клетке на отдельные участки, отличающиеся функциональным значением и интенсивностью участия в обмене веществ. Осуществляется при участии мембран и органелл клетки. Мембранная система. Эта система представлена клеточной плазматической мембраной, цитоплазматической (эндоплазматической) сетью и пластинчатым комплексом Гольджи. а) Плазматическая (цитоплазматическая)состоит из трех слоев, два из которых являются белковыми слоями, а третий (внутренний) — двойным фосфолипидным слоем. Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. В результате этого плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической  мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а также системы транспорта аминокислот. У клеток растений наружной структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются также специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость

    б) Цитоплазматическая (эндоплазматическая) сеть представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами.

    Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом, служащих центрами синтеза молекул белков.

    Агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярной эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. Эндоплазматическая сеть без перерыва соединена с цитоплазматической мембраной, ядерной мембраной и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальной обработки они выводятся из клетки или идут на построение лизосом. Плазматическая мембрана, мембрана эндоплазматической сети, а также ядер, митохондрий и хлоропластов представляют собой чрезвычайно сложные структуры, обладающие рядом важнейших биологических свойств. Многие мембраны содержат транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток а также вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, если в них по каким-то причинам возникают повреждения.

    в) Комплекс Гольджи. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом). Основная функция комплекса Гольджи заключается в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а также присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). Как отмечено выше, он участвует также и в формировании лизосом.

    1. Строение эукариотической клетки: поверхностный аппарат, протоплазма (ядро и цитоплазма).

    Основная часть поверхностного аппарата клетки — плазматическая или биологическая мембрана (цитоплазматическая мембрана). Клеточная мембрана — важнейший компонент живого содержимого клетки, построенный по общему принципу. Предложено несколько моделей строения. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, в состав мембран входит бимолекулярный слой фосфолипидов, в который включены молекулы белков. Липиды — водонерастворимые вещества, молекулы которых имеют два полюса: гидрофильный, гидрофобный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу гидофобными концами. А гидрофильные полюса остаются снаружи, которые образуют гидрофильные поверхности. На поверхности мембраны кнаружи и кнутри расположены НЕСПЛОШНЫМ слоем белки, их 3 группы: периферические, погруженные (полуинтегральные), пронизывающие (интегральные). Большинство белков мембраны — ферменты. Погруженные белки образуют на мембране биохимический конвейер, на котором происходит превращение веществ. Положение погруженных белков стабилизируется периферическими белками. Пронизывающие белки обеспечивают передачу вещества в двух направлениях: через мембрану внутрь клетки и обратно. Бывают двух типов: переносчики и каналообразующие. Каналообразующие выстилают пору, заполненную водой, через которую проходят растворенные неорганические вещества с одной стороны мембраны на другую. Плазматическая мембрана, или плазмалемма, ограничивает клетку снаружи, выполняя роль механического барьера. На внешней поверхности плазматической мембраны в животной клетке белковые и липидные молекулы, связаны с разветвленными углеводными цепями, образуя гликокаликс, надмебранный, неживой слой, продукт жизнедеятельности клетки. Углеводные цепи выполняют роль рецепторов (межклеточное узнавание- свой-чужой) . Клетка приобретает способность специфически реагировать на воздействие извне. В надмебранный слой у бактерий входим муреин, у растений — целлюлоза или пектин. Под плазматической мембраной со стороны цитоплазмы имеются кортикальный (поверхностный) слой и внутриклеточные фибриллярные структуры, обеспечивают механическую устойчивость мембраны.
    ПРОТОПЛАЗМА Цитоплазма - внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает в себя гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения. Так же она является смесью коллоидного (в него входят белки) и истинного раствора (минеральные соли, глюкоза, аминокислоты).В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы — вода. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. В ней протекают все процессы обмена веществ.

    Ядро- это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хроматина, ядрышка, кариоплазмы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети. Основу ядерного сока, или матрикса, составляют белки.Ядрышкопредставляет собой структуру, в которой происходит образование и созревание рибосомальных РНК (рРНК). Такие участки в метафазных хромосомах выглядят как сужения и называются вторичными перетяжками. Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки.


    1. Поверхностный аппарат клетки. Строение и функции. Биологические мембраны. Их строение и функции. Транспорт веществ: активный и пассивный.

    Поверхностный аппарат клеток состоит из 3 субсистем - плазматической мембраны, надмембранного комплекса (гликокаликс или клеточная стенка) и субмембранного опорно-сократительного аппарата. кортикального слоя цитоплазмы.

    Его основные функции определяются пограничным положением и включают: 1) барьерную (разграничительную) функцию;

    2) функцию распознавания других клеток и компонентов межклеточного вещества;

    3) рецепторную функцию, включая взаимодействие с сигнальными молекулами

    4) транспортную функцию;

    5) функцию движения клетки посредством образования псевдо-, фило- и ламеллоподий).

    6.Стабилизирующая.

    7.Регуляторная

    Биологические мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндоплазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов.

    Плазматическая мембрана, или плазмалемма, около 10 нанометров. — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую пленку, покрывающую всю клетку

    Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

    Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполнет рецепторную функции Биологическая мембрана состоит из молекул липидов двух параллельных слоев обращены друг к другу неполярными концами, а их полярные полюса остаются снаружи, образуя гидрофильные поверхности. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образом актиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются: выбрасывание, прикрепление и сокращение псевдоподий.

    Транспорт веществ:

    Поступление веществ через мембрану зависит от размеров вещества. Малые молекулы проходят путем активного и пассивного транспорта, перенос макромолекул и крупных частиц осуществляется за счет образования мембранных пузырьков эндоцитозом и экзоцитозом. Пассивный транспорт- (без энергии) диффузия по градиенту концентрации облегчённая диффузия через канал в мембране, образованный белками. Активный транспорт- (затрата энергии АТФ) при участии белков переносчиков против градиента концентрации.

    Эндоцитоз — это транспорт макромолекул через плазмолемму. Соответственно агрегатному состоянию поглощаемого вещества выделяют пиноцитоз (захват и транспорт клеткой жидкости или растворенных в жидкости соединений) и фагоцитоз (захват и транспорт твердых частиц). Фагоцитоз и пиноцитоз также относятся к активному транспорту. Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется углубления мембраны. В результате частица оказывается заключенной в мембранный пузырек – фагосому – внутри клетки.


    1. Протоплазма. Организация и функции. Роль изменения агрегатного состояния цитоплазмы в жизнедеятельности клетки (золь–гель переходы). Понятие о биоколлоиде.

    Протоплазма — содержимое живой клетки, включающее ее ядро и цитоплазму.

    Взаимодействуя с окружающей средой, клетка ведет себя как целостная структура.

    Свойствам протоплазмы приписывается важная роль функционального объединения структурных компонентов и компартментов клетки. В целом, ее принято рассматривать как особую многофазную коллоидную систему или биоколлоид. От банальных коллоидных систем биоколлоид отличается сложностью дисперсной фазы. Основу ее составляют макромолекулы, которые присутствуют либо в составе плотных микроскопически видимых структур, либо в диспергированном состоянии, близком к растворам или рыхлым структурам типа гелей.

    Будучи коллоидным раствором в физико-химическом смысле, биоколлоид благодаря наличию липидов и крупных частиц проявляет одновременно свойства соответственно эмульсии и суспензии Между крайними полюсами организации протоплазмы в виде вязких гелей и растворов имеются переходные состояния. При указанных переходах совершается работа, в результате которой осуществляются различные внутриклеточные превращения,—образование мембран, сборка микротрубочек или микрофиламентов из субъединиц, выброс из клетки секрета, изменение геометрии белковых молекул, приводящее к торможению или усилению ферментативной активности. Особенностью биоколлоида является также и то, что в физиологических условиях переходы протоплазмы из одного агрегатного состояния в другое (в силу наличия особого ферментативного механизма) обратимы.

    Названное свойство биоколлоида обеспечивает клетке способность при наличии энергии многократно совершать работу в ответ на действие стимулов.

    Цитоплазма - внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает в себя Гиалоплазму— это основная плазма, истинная внутренняя среда клетки. Состав гиалоплазмы весьма сложен, а консистенция приближается к гелю. Гели — структурированные коллоидные системы с жидкой дисперсной средой, которые под воздействием внешних или внутренних факторов могут менять свое агрегатное состояние и переходить в более жидкую фазу — золь. Подобные гель-золь переходы могут происходить в цитоплазме под влиянием белка актина, причем меняется ее состояние в различных участках клетки, что и обеспечивает движение всей клетки. При взаимодействии фибриллярного актина с белками типа фимбрина происходит стабилизация геля, а при связывании с белками, активность которых зависит от концентрации ионов Са (например, гельзолин), вся система переходит в жидкое состояние. Вообще выраженность элементов клеточного скелета, и актинового его компонента в том числе, может значительно меняться в течение клеточного цикла.

    БИОКОЛЛОИДЫ - мельчайшие частицы, обычно белков и липидов, содержащиеся в цитоплазме живых клеток. Обусловливают дисперсность и структурность плазмы клетки. Покрыты пленками клеточной воды, БИОКОЛЛОИДЫ не слипаются и не увеличиваются в размере. Сильное обезвоживание тканей приводит к слипанию (см. Коагуляция) или слиянию (см. Коалесценция) частиц. Полная коагуляция биоколлойдов влечет за собой гибель клеток, тканей, органов или всего растения. Состояние биоколлойдов клетки определяет устойчивость организма к неблагоприятным факторам среды, скорость возобновления жизнедеятельности клеток после их частичного обезвоживания.

    1. Ядро как основной регуляторный компонент клетки. Его строение и функции.

    Ядро - обязательная часть клеток эукариот. Это основной регуляторный компонент клет­ки. Оно отвечает за хранение и передачу наследственной информации, управляет всеми обменными процессами в клетке. Не органоид, а компонент клетки.
    1   2   3   4   5   6   7   8   9   ...   25


    написать администратору сайта