Документ Microsoft Word. Основное назначение информационных систем в экономике
Скачать 357.4 Kb.
|
Глава VI. Классификация ИИС ИИС могут размещаться на каком-либо сайте, где пользователь задает системе вопросы на естественном языке (если это вопросно-ответная система) или, отвечая на вопросы системы, находит необходимую информацию (если это экспертная система). Но, как правило, ЭС в интернете выполняют рекламно-информационные функции (интерактивные баннеры), а серьезные системы (такие, как, например, ЭС диагностики оборудования) используются локально, так как выполняют конкретные специфические задачи. Интеллектуальные поисковики отличаются от виртуальных собеседников тем, что они достаточно безлики и в ответ на вопрос выдают некоторую выжимку из источников знаний (иногда достаточно большого объема), а собеседники обладают «характером», особой манерой общения (могут использовать сленг, ненормативную лексику), и их ответы должны быть предельно лаконичными (иногда даже просто в форме смайликов, если это соответствует контексту). ИИС: Экспертные системы Собственно экспертные системы (ЭС) Интерактивные баннеры (web + ЭС) Вопросно-ответные системы (в некоторых источниках «системы общения») Интеллектуальные поисковики (например, система Старт) Виртуальные собеседники Виртуальные цифровые помощники §1. Экспертные системы Экспертная система (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Это вычислительная система, в которую включены знания специалистов о некоторой узкой предметной области в форме базы знаний. Такие системы могут использоваться не экспертом для улучшения их способностей и возможностей в решении задач определенного класса в конкретной предметной области. ЭС могут быть использованы для распространения источников редких знаний. Эти системы могут иметь значительное влияние как на деятельность таких профессиональных консультантов, как финансовые аналитики, юристы, аудиторы и др., так и на организации и их менеджмент. Внутри экспертной системы нет заранее заданного дерева вопросов, каждый следующий вопрос выбирается исходя из ответов на все предыдущие. Это позволяет исключить лишние вопросы и не выдавать варианты ответа, которые не приведут к каким-либо результатам. Отсутствие фиксированного дерева позволяет пользователю задавать приоритет вопросов, выбирая наиболее важные для себя аспекты в процессе поиска. В любой момент можно снова вернуться к вопросу и выбрать другой ответ без необходимости снова отвечать на остальные вопросы. Экспертные системы имеют одно большое отличие от других ИИС: они не предназначены для решения каких-то универсальных задач, как например нейронные сети или генетические алгоритмы. Экспертные системы предназначены для качественного решения задач в определенной разработчиками области, в редких случаях – областях. Рис.6.1.1. Экспертная система Технологию построения ЭС (см. Рис.6.1.2.) часто называют инженерией знаний. Рис.6.1.2. Процесс построения ЭС. Характерными чертами ЭС являются: четкая ограниченность предметной области; способность принимать решения в условиях неопределенности; способность объяснять ход и результат решения понятным для пользователя способом; четкое разделение декларативных и процедурных знаний (фактов и механизмов вывода); способность пополнять базу знаний, возможность наращивания системы; результат выдается в виде конкретных рекомендаций для действий в сложившейся ситуации, не уступающих решениям лучших специалистов; ориентация на решение неформализованных (способ формализации пока неизвестен) задач; алгоритм решения не описывается заранее, а строится самой экспертной системой; отсутствие гарантии нахождения оптимального решения с возможностью учиться на ошибках. Классификации ЭС · Собственно Экспертные системы Интерактивные баннеры (web + ЭС) Интерактивные говорящие баннеры — это инфы или экспертные системы, предназначенные для размещения на внешних ресурсах. Преимущества интерактивных баннеров: Повышенная привлекательность для потребителей — с необычным баннером хочется пообщаться. Продолжительный контакт с пользователем. Среднее время общения с баннером может составлять около 3 минут. Баннер может вести разных собеседников на разные страницы, в соответствии с их запросами и потребностями. Классификация ЭС по связи с реальным временем: Статические ЭС - это ЭС, решающие задачи в условиях не изменяющихся во времени исходных данных и знаний. Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени. Динамические ЭС - это ЭС, решающие задачи в условиях изменяющихся во времени исходных данных и знаний. Структура ЭС: На Рис.6.1.3. ниже представлена каноническая структура экспертной системы динамического типа: Рис.6.1.3. Структура ЭС механизм логического вывода, называемый также интерпретатором, решателем; рабочую память (РП), называемую также рабочей базой данных (БД); базу знаний (БЗ); подсистему приобретения и пополнения знаний; подсистему объяснения; подсистему диалога; подсистему взаимодействия с внешним миром. Механизм логического вывода (МЛВ) предназначен для получения новых фактов на основе сопоставления исходных данных из рабочей памяти и знаний из базы знаний. Механизм логического вывода реализует алгоритмы прямого и/или обратного вывода и формально может быть представлен четверкой: Механизм вывода является мозгом ЭС, его также называют управляющая структура или интерпретатор правил (в ЭС, основанных на правилах). Эта компонента является в основном компьютерной программой, которая обеспечивает методологию для рассуждения об информации в БЗ и в рабочей области, а также для формулирования заключений. Она обеспечивает указания о том, как использовать знания системы при реализации аренды (расписания запланированных действий в рабочей области), которая организует и управляет шагами, предпринимаемыми для решения задачи. Механизм вывода имеет два главных элемента: - Интерпретатор, который выполняет выбранные позиции аренды, используя соответствующие правила БЗ. - Планировщик, который поддерживает управление агендой. Он оценивает результаты используемых правил вывода в свете их приоритетов или других критериев в агенде. Рабочая память предназначена для хранения исходных и промежуточных фактов решаемой в текущий момент задачи. Как правило, размещается в оперативной памяти ЭВМ и отражает текущее состояние предметной области в виде фактов с коэффициентами уверенности (КУ) в истинности этих фактов. Ценность всей экспертной системы как законченного продукта на 90% определяется качеством созданной базы знаний. Как правило, БЗ ЭС содержит факты (статические сведения о предметной области) и правила — набор инструкций, применяя которые к известным фактам можно получать новые факты. В рамках логической модели баз данных и базы знаний записываются на языке Пролог— язык и система логического программирования) с помощью языка предикатов для описания фактов и правил логического вывода, выражающих правила определения понятий, для описания обобщенных и конкретных сведений, а также конкретных и обобщенных запросов к базам данных и базам знаний. Подсистема приобретения и пополнения знаний автоматизирует процесс наполнения экспертной системы знаниями, осуществляемый пользователем-экспертом, и адаптации базы знаний системы к условиям ее функционирования. Адаптация экспертной системы к изменениям в предметной области реализуется путем замены правил или фактов в базе знаний. Подсистема объяснения объясняет, как система получила решение задачи (или почему она не получила решения) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату. Возможность объяснять свои действия является одним из самых важных свойств экспертной системы, так как: повышается доверие пользователей к полученным результатам; облегчается отладка системы; создаются условия для пользователей по вскрытию новых закономерностей предметной области; объяснение полученных выводов может служить средством поиска точки в парето-оптимальном множестве решений. В настоящее время на практике все СО реализуются на одних и тех же принципах в основном двумя способами: - фиксацией событий и состояний с помощью заготовленных текстов на естественном языке; - трассировкой рассуждений, обратным развертыванием дерева целей с указанием подцелей. При реализации каждого из этих способов предварительно выделяются ситуации, факты и узлы перехода в новые состояния, требующие объяснений. Им ставится в соответствие некоторый текст объяснения. Структура экспертной системы была бы неполной без подсистемы диалога. Подсистема диалога ориентирована на организацию дружественного интерфейса со всеми категориями пользователей как в ходе решения задач, так и в ходе приобретения знаний и объяснения результатов работы. Факты и правила в экспертной системе не всегда либо истинны, либо ложные. Иногда существует некоторая степень неуверенности в достоверности факта или точности правила. Если это сомнение выражено явно, то оно называется «коэффициентом доверия». Коэффициент доверия – это число, которое означает вероятность или степень уверенности, с которой можно считать данный факт или правило достоверным или справедливым. Данный коэффициент является оценкой степени доверия к решению, выдаваемому экспертной системой. Такая оценка, например, может проводиться по схеме Шортлиффа. Режимы функционирования ЭС: Режим ввода знаний — в этом режиме эксперт с помощью инженера по знаниям посредством редактора базы знаний вводит известные ему сведения о предметной области в базу знаний ЭС. Режим консультации — пользователь ведет диалог с ЭС, сообщая ей сведения о текущей задаче и получая рекомендации ЭС. Например, на основе сведений о физическом состоянии больного ЭС ставит диагноз в виде перечня заболеваний, наиболее вероятных при данных симптомах. Табл.6.1.1. Основные классы решения задач, решаемые ЭС
Некоторые ЭС принадлежат к двум или более из этих категорий. Дадим краткое описание каждой их этих категорий. Системы интерпретации выявляют описания ситуации из наблюдений. Это категория включает наблюдения, понимание речи, анализ образов, интерпретацию сигналов и многие другие виды интеллектуального анализа. Система интерпретации объясняют наблюдаемые данные путем присвоения им символических значений, описывающих ситуацию. Системы предсказания включают прогнозирование погоды, демографические предсказания, экономическое прогнозирование, оценки урожайности, а также военное, маркетинговое и финансовое прогнозирование. Системы диагностики включают диагностику в медицине, электронике, механике и программном обеспечении. Диагностирующие системы обычно соотносят наблюдаемые поведенческие отклонения с причинами, лежащими в основе. Системы проектирования разрабатывают конфигурации объектов, которые удовлетворяют определенным требованиям задачи проектирования. Такие задачи включают конструирование зданий, планировка расположения оборудования и др. Эти системы конструируют различные взаимосвязи описаний объектов друг с другом и проверяют, удовлетворяют ли эти конфигурации установленным ограничениям и требованиям. Системы планирования специализируются на задачах планирования, например, такой как автоматическое программирование. Они также работают с кратко и долгосрочным планированием в управлении проектами, маршрутизация, коммуникация, разработка продукт а, военные приложения, производственное и финансовое планирование. Системы мониторинга сравнивают наблюдения поведения системы со стандартами, которые представляются определяющими для достижения цели. Эти решающие выявления соответствуют потенциальным недостаткам на предприятии. Существует много компьютерных систем мониторинга: от контроля движения воздушных потоков до задач управления сбором налогов. Системы управления и контроля адаптивно управляют всеобщим поведением системы. Для осуществления этого система управления должна периодически интерпретировать текущую ситуацию, предсказывать будущее, диагностировать причины ожидаемых проблем, формулировать план устранения этих проблем и осуществлять мониторинг его выполнения для обеспечения успеха. Наиболее известные/распространённые ЭС: CLIPS — популярная ЭС (public domain) OpenCyc — мощная динамическая ЭС с глобальной онтологической моделью и поддержкой независимых контекстов MYCIN — наиболее известная диагностическая система, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. HASP/SIAP — интерпретирующая система, которая определяет местоположение и типы судов в Тихом океане по данным акустических систем слежения. Первую ЭС под названием Dendral разработали в Стэнфорде в конце 1960-х гг. Она определяла строение органических молекул по химическим формулам и спектрографическим данным о химических связях в молекулах. Ценность Dendral заключалась в следующем: органические молекулы, как правило, очень велики и поэтому число возможных структур этих молекул также велико; благодаря эвристическим знаниям экспертов-химиков, заложенных в ЭС, правильное решение из миллиона возможных находилось всего за несколько попыток. Принципы и идеи, заложенные в Dendral оказались настолько эффективными, что они до сих пор применяются в химических и фармацевтических лабораториях по всему миру. ЭС Dendral одной из первых использовала эвристические знания специалистов для достижения уровня эксперта в решении задач, однако методика современных экспертных систем связана с другой разработкой – Myсin. В ней использовались знания экспертов медицины для диагностики и лечения специального менингита и бактериальных инфекций крови. ЭС Mycin, также разработанная в Стэнфорде в середине 1970-х гг., одной из первых обратилась к проблеме принятия решений на основе ненадежной или недостаточной информации. Все рассуждения экспертной системы Mycin были основаны на принципах управляющей логики, соответствующих специфике предметной области. Многие методики разработки экспертных систем, использующиеся сегодня, были впервые разработаны в рамках проекта Mycin. MYCIN была ранней экспертной системой разработанной за 5 или 6 лет в начале 1970х годов в Стендфордском университете. Она была написана на Лиспе как докторская диссертация Edward Shortliffe под руководством Bruce Buchanan, Stanley N. Cohen и других. В этой же лаборатории была ранее создана экспертная система Dendral, но на этот раз внимание было акцентировано на использовании решающих правил с элементами неопределенности. MYCIN был спроектирован для диагностирования бактерий, вызывающих тяжелые инфекции, такие как бактериемия и менингит, а также для рекомендации необходимого количества антибиотиков в зависимости от массы тела пациента. Название системы происходит от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Также Mycin использовалась для диагностики заболеваний свертываемости крови. Преимущества ЭС: 1. Постоянство Человеческая компетенция ослабевает со временем. Перерыв в деятельности человека-эксперта может серьёзно отразиться на его профессиональных качествах. 2. Лёгкость передачи Передача знаний от одного человека другому – долгий и дорогой процесс. Передача искусственной информации – это простой процесс копирования программы или файла данных. 3. Устойчивость и воспроизводимость результатов Экспертные системы устойчивы к «помехам». Человек же легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей. Эксперт-человек может принимать в тождественных ситуациях разные решения из-за эмоциональных факторов. Результаты экспертной системы – стабильны. 4. Стоимость Эксперты, особенно высококвалифицированные обходятся очень дорого. Экспертные системы, наоборот, сравнительно недороги. Их разработка дорога, но они дёшевы в эксплуатации. Кроме того, эксперт–человек может принимать различные решения в тождественных ситуациях из-за эмоциональных факторов (влияние дефицита времени, влияние стресса). Табл.6.1.2. Сравнение человеческой и искусственной компетентности
Недостатки ЭС: На сегодняшний день создано уже большое количество экспертных систем. С помощью них решается широкий круг задач, но исключительно в узкоспециализированных предметных областях. Как правило, эти области хорошо изучены и располагают более менее четкими стратегиями принятия решений. Сейчас развитие экспертных систем несколько приостановилось, и этому есть ряд причин: Передача экспертным системам «глубоких» знаний о предметной области является большой проблемой. Как правило, это является следствием сложности формализации эвристических знаний экспертов. Экспертные системы неспособны предоставить осмысленные объяснения своих рассуждений, как это делает человек. Как правило, экспертные системы всего лишь описывают последовательность шагов, предпринятых в процессе поиска решения. Отладка и тестирование любой компьютерной программы является достаточно трудоемким делом, но проверять экспертные системы особенно тяжело. Это является серьезной проблемой, поскольку экспертные системы применяются в таких критичных областях, как управление воздушным и железнодорожным движением, системами оружия и в ядерной промышленности. Экспертные системы обладают еще одним большим недостатком: они неспособны к самообучению. Для того, чтобы поддерживать экспертные системы в актуальном состоянии необходимо постоянное вмешательство в базу знаний инженеров по знаниям. Экспертные системы, лишенные поддержки со стороны разработчиков, быстро теряют свою востребованность. Эксперты могут непосредственно воспринимать комплекс входной сенсорной информации (визуальной, звуковой, осязательной, обонятельной и тактильной). ЭС – только символы. Хотя в отдельных направлениях разработки инженерных и производственных интеллектуальных систем получены реальные результаты определенной обработки сенсорной информации. Эксперты – люди могут охватить картину в целом, все аспекты проблемы и понять, как они соотносятся с основной задачей. ЭС стремится сосредоточить на самой задаче, хотя смежные задачи могут повлиять на решение основной. Люди, эксперты и не эксперты, имеют то, что мы называем здравым смыслом, или общедоступными знаниями. Это широкий спектр общих знаний о мире, о том, какие законы в нем действуют, т.е. знания, которыми каждый из нас обладает, приобретает из опыта и которыми постоянно пользуется. Из-за огромного объема знаний, образующих здравый смысл, не существует легкого способа встроить их в интеллектуальную программу. Знания здравого смысла включают знания о том, что вы знаете и чего не знаете. Поэтому ЭС наиболее часто используются как советчики, в качестве консультантов или помощников ЛПР. §2. Вопросно-ответные системы Классификация Вопросно-ответных систем: Интеллектуальные поисковики (например, система Старт) Виртуальные цифровые помощники Виртуальные собеседники (ВС) Виртуальные собеседники устанавливаются на сайт и общаются с его пользователями посредством текстового чата. У каждого инфа есть свой визуальный образ, который способен передавать эмоции инфа и делает общение с собеседником более личным и доверительным. Структура виртуальных собеседников: Первый компонент ВС – это пользовательский интерфейс, при помощи которого пользователь разговаривает с ВС. Пользовательский интерфейс представляет собой окошко со строкой ввода текста, репликами инфа и его визуальным образом. По сути, это Flash-приложение, которое легко и быстро устанавливается на любой сайт. Второй компонент – это комплексная платформа, которая определяет поведение и словарный запас ВС. Помимо прочего, в комплексную платформу входит база знаний инфа - набор гибких сценариев с заданными вариантами вопросов и ответов на них. Дополнительно к базе знаний может быть подключена клиентская база данных с пользовательской информацией, откуда инф будет брать конкретные данные о товарах и услугах. В частности, это широко применяется при разработке инфов-продавцов. Решаемые задачи: ВС легко поддаются обучению и помогают решить множество задач, стоящих перед заказчиком. Они могут быть: консультантами, отвечающими на вопросы пользователей о представленных товарах и услугах; продавцами, помогающими подобрать нужный товар, услугу, тариф и т.п.; сотрудниками технической поддержки, помогающими пользователю решить возникшие технические проблемы; промоутерами, продвигающими новые товары и услуги; интересными собеседниками, вызывающими интерес, повышающими настроение и лояльность посетителей. Сферы применения: Банки и страховые компании, которым важно иметь на сайте грамотного консультанта, способного оперативно рассказать все подробности о предоставляемых услугах; Интернет–магазины, которым важно помогать клиентам в выборе товаров, а также продвигать акции и распродажи; Интернет–порталы, которым необходимо привлекать внимание пользователей к их внутренним проектам; Организаторы мероприятий, которым важно информировать посетителей сайта о всех новостях и подробностях; Компании, оказывающие технические услуги, которым важно обеспечить круглосуточную техническую поддержку пользователей. Преимущества виртуальных собеседников: Работоспособность: инф работает 24 часа в сутки 7 дней в неделю и может одновременно общаться с неограниченным количеством пользователей. Инф позволяет снизить нагрузку и расходы на call-центр, консультантов и специалистов технической поддержки. Доступность: инф снимает психологический барьер, стоящий перед пользователем при обращении за помощью; достаточно ввести фразу – и инф моментально даст грамотный совет. При этом пользователи относятся к инфу с доверием, поскольку он умеет поддерживать живой, непринужденный диалог и даже выражать эмоции в ответ на реплики пользователя. Простота работы: инф не требует от пользователя использования никаких дополнительных программ. В то же время инф не создает проблем и у заказчика: для установки инфа на сайт достаточно разместить на страницах специальный короткий код. Компетентность: инф легко поддается обучению, что позволяет заложить в него все важные вопросы, которые интересуют пользователей. Инф способен помогать пользователю в навигации по сайту, автоматически открывая необходимые страницы. При необходимости инф может сам инициировать диалоги на нужные темы. Внимательность: Инф записывает все разговоры с пользователями, и заказчик имеет к ним полный доступ. Записи разговоров полезны как с точки зрения дальнейшего обучения инфа, так и с точки зрения сбора ценной информации о пользователях и их интересах. Использование ВС позволяет: Увеличить конверсию посетителей в клиентов: инф снимает мотивационный барьер между пользователем и сайтом, поскольку сразу вызывает доверие у пользователя и дает ему именно ту информацию, которая его интересует. Повысить лояльность посетителей: яркий, позитивный инф поддерживает живое общение с пользователем и вызывает у него самые положительные эмоции. Что важно, в сознании пользователя эти эмоции будут напрямую связаны с образом компании - заказчика инфа. Улучшить эффект от рекламной кампании и маркетинговых акций: инф привлекает к себе внимание пользователей и предоставляет им самую полную информацию о рекламируемом предмете. Снизить нагрузку на штатных консультантов, продавцов и сотрудников техподдержки: отвечая на часто возникающие и легко решаемые вопросы, инф экономит время и силы штатных специалистов, позволяя им сконцентрироваться на действительно важных проблемах. Повысить уровень обслуживания клиентов: инф позволяет выяснить, что интересует конкретного клиента, и предоставить ему то, что нужно! Глава VII. Перспективы развития ИИС в управлении знаниями Рассматривая тенденции развития Интеллектуальных информационных систем в управлении знаниями, следует отметить следующие основные направления, связанные с разработкой моделей и методов реализации отдельных аспектов получения и преобразования знаний: 1. Технологии извлечения и представления знаний. В первом случае основной задачей является разработка методов: формального описания "признаков знаний" (поисковых образов); формализации ПрО; распознавания и сравнения образов; извлечения знаний из экспертов, статистики, текстов, "опыта" и т.п. Во втором - решаются задачи, связанные с формализацией знаний для их представления в памяти интеллектуальных систем (ИС). Решение этих задач позволяет разработчикам комплексных технологий получить ответы на три принципиально важных вопроса: какие знания необходимо представлять в ИС, кто (что) является источником этих знаний, какие методы и модели обеспечивают адекватное представление этих знаний в ИС. 2. Технологии манипулирования знаниями, решение интеллектуальных задач предполагает не только представление знаний в ИС, но и их обработку, т.е. необходимо научить ИС оперировать ими. Поэтому здесь изучаются вопросы пополнения знаний на основе их неполных описаний, классификации знаний в ИС, разрабатываются процедуры и методы обобщения знаний, достоверного вывода и др. 3. Технология общения. Переход к ИС знаменует новую технологию общения конечных пользователей с ЭВМ и требует решения таких проблем, как понимание связных текстов на ограниченном и неограниченном естественном языке, понимание речи и ее синтез, разработка коммуникативных моделей "пользователь-ЭВМ", формирование объяснений и т.п. Главная цель данных исследований - обеспечение комфортных условий для общения человека и ИС. 4. Технологии восприятия. Разработка этих технологий предполагает создание методов: анализа трехмерных сцен, представления информации о зрительных образах в базе знаний ИС, трансформации зрительных сцен в текстовые описания и обратно, а также разработку процедур когнитивной графики и др. 5. Технологии обучения. Отличительной особенностью ИС должна стать их способность решать задачи, в явном виде не представленные в БЗ, что требует наделения ИС способностью к обучению. Для этих целей необходимо: создать методы формирования условий задачи по описанию проблемной ситуации или по наблюдению за этой ситуацией, обеспечить переход от известного решения частных задач к решению общей задачи, наделить ИС способностью декомпозировать исходную задачу на более мелкие, решение которых известно, разработать нормативные и декларативные модели самого процесса обучения, создать теорию подражательного поведения и др. 6. Технологии поведения. Взаимодействие ИС со средой требует разработки специальных поведенческих процедур, которые бы позволили им адекватно реагировать на те или иные изменения в среде. Такое взаимодействие предполагает создание моделей целесообразного, нормативного и ситуативного поведения, а также разработку методов многоуровневого планирования и коррекции планов в динамических ситуациях. Заключение Области применения существующих на сегодняшний день систем ИИ охватывает множество сфер: медицинскую диагностику, интерпретацию геологических данных, научные исследования в химии и биологии, военное дело, производство, финансы и другие области. Однако, несмотря на значительные успехи в области ИИ, пока еще существует определенный разрыв между техническими разработками, программными средствами ИИ и возможностями их более широко практического применения в частности, в экономике. Наиболее показательным сектором, аккумулирующим различные проблемные направления экономической области, является управление промышленным предприятием. На его примере особенно хорошо видны преимущества использования систем ИИ для решения как различных предметных задач, так и для управления интегрированной системой предприятия в целом. Существует множество доводов в пользу того, что системы искусственного интеллекта могут и должны стать важнейшей составной частью в технологии современных производств. Основными из них являются: - преодоление сложности (сложности управления возникают тогда, когда приходится делать выбор из множества возможных решений); - управление предприятием требует организации больших объемов информации; - как уменьшить информацию до того уровня, который необходим для принятия решения (потеря информации, поступающей от объектов, работающих в реальном режиме времени, может существенно сказаться на результате); - нехватка времени на принятие решения (проявляется по мере усложнения производства); - проблема координации (решения необходимо координировать с другими звеньями процесса или объекта); - необходимость сохранения и распространения знаний очень опытных экспертов, полученных ими в процессе многолетней работы и большого практического опыта. Проблема извлечения знаний и их сохранения и распределения — сегодня одна из главных проблем организаций. Таким образом, интеллектуализация информационных систем управления и трансформация их в интеллектуальные информационные системы управления знаниями, поддержки принятия решений является наиболее значимым и важным для экономики и бизнеса направлением. Список источников информации 1. Chi Leung Patrick Hui, ISBN 978-953-307-188-6, 586 pages, April 2011 2. Edited by Karl Perusich, Cognitive Maps, ISBN 978-953-307-044-5, 140 pages, January 2010 3. John Prager, Eric Brown, Anni Coden, and Dragomir Radev. Question-answering by predictive annotation. In Proceedings, 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Athens, Greece, July 2000 4. Knox Haggie, John Kingston, Choosing Your Knowledge Management Strategy, School of Informatics, University of Edinburgh, Journal of Knowledge Management Practice, June 2003 5. Negnevitsky M. Artificial Intelligence. A guide to intelligent systems. Addison-Wesley, 2005. 6. Peter Jackson, Introduction to Expert Systems. — 3rd edition, Hardbound — Addison Wesley Publishing Company, 1998-12-31 — 560p. — ISBN 0201876868 7. Абдикеев Н.М. Проектирование интеллектуальных систем в экономике: Учебник. – М.: Экзамен, 2004. – 528 с. 8. Абдикеев Н.М. Интеллектуальные информационные системы: Учебное пособие.- М.: КОС-ИНФ, Рос. экон. акад., 2003. – 188 с. 9. Абдикеев Н.М., Киселев А.Д. Управление знаниями корпорации и реинжиниринг бизнеса (Под ред. Абдикеева Н.М.). Инфра-М, Москва, 2010 10. А.В. Гаврилов. Гибридные интеллектуальные системы: Монография – Новосибирск: Изд-во НГТУ, 2002. – 142 с. 11. В.В. Бухтояров "Эволюционный метод формирования общего решения в коллективах нейронных сетей", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2010 / 03 12. Г.В. Рыбина, А.О. Дейнеко "Распределенное приобретение знаний для автоматизированного построения интегрированных экспертных систем", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2010 / 04 13. Г.В. Рыбина "Обучающие интегрированные экспертные системы: некоторые итоги и перспективы", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2008 / 01 14. Г.С. Осипов "Динамические интеллектуальные системы", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2008 / 01 15. Золотов С.И. Интеллектуальные информационные системы: учебное пособие / С.И. Золотов – Воронеж: Научная книга, 2007. –140с. 16. Интеллектуальные информационные системы: учебник для студентов высших учебных заведений, обучающихся по специальности "Прикладная информатика в экономике" / А. В. Андрейчиков, О. Н. Андрейчикова. - М. : Финансы и статистика, 2004. - 423 с. 17. Интеллектуальные методы для создания информационных систем: учебное пособие / Е.Ю. Головина.– М.: Издательский дом МЭИ, 2011. – 102 с. - ISBN 978-5-383-00212-4 18. П.Р. Варшавский, А.П. Еремеев "Моделирование рассуждений на основе прецедентов в интеллектуальных системах поддержки принятия решений", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2009 / 02 19. Романов В.П. Интеллектуальные информационные системы в экономике Учебное пособие / Под ред. д. э. н., проф. Н. П. Тихомирова. — М.: Издательство «Экзамен», 2003. — 496 с. 20. Рыбина Г.В. "Теория и практика построения интегрированных экспертных систем", Рецензенты: зав.каф. прикладной математики МЭИ, д.т.н., проф. Еремеев А.П., зав.каф. МГУПИ, д.т.н., проф. Петров О.М., М.: ООО Издательство "Научтехлитиздат", 2008. -485 с. - ISBN 978-5-93728-081-7 21. Таунсенд К., Фохт Д. Проектирование и программная реализация экспертных систем на персональных ЭВМ: Пер. с англ. В. А. Кондратенко, С. В. Трубицына. — М.: Финансы и статистика, 1990. — 320 с. |