Главная страница
Навигация по странице:

  • ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПУНКТОВ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ВАГОНОВ

  • Цель работы

  • Расчетная часть

  • вагонное хозяйство. вх пр4. Отчет по практической работе 4 по дисциплине Вагонное хозяйство


    Скачать 0.56 Mb.
    НазваниеОтчет по практической работе 4 по дисциплине Вагонное хозяйство
    Анкорвагонное хозяйство
    Дата22.01.2022
    Размер0.56 Mb.
    Формат файлаpdf
    Имя файлавх пр4.pdf
    ТипОтчет
    #339080

    ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
    Федеральное государственное бюджетное общеобразовательное учреждение высшего образования
    «Уральский государственный университет путей сообщения»
    (ФГБОУ ВО УрГУПС)
    Кафедра «Вагоны»
    ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПУНКТОВ
    ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ВАГОНОВ
    Отчет по практической работе №4 по дисциплине: «Вагонное хозяйство»
    Проверил:
    Выполнил:
    Ассистент студент гр. ПСв-517
    Бубнова Г.А.
    Собянин М.С.
    Екатеринбург
    2021

    2
    Исходные данные
    Наименование исходных данных
    Исходные данные
    Количество бригад n
    2
    Количество путей r
    3
    Количество составов N
    Парк прибытия (ПП)
    Парк отправления (ПО)
    12 14
    Время обслуживания в парке прибытия 𝑡
    обслПП
    , ч
    0,5
    Время обслуживания в парке отправления
    𝑡
    обслПО
    , ч
    0,75
    Цель работы: определить параметры пунктов технического обслуживания вагонов.

    3
    Ход работы
    Теоретическая часть
    Исходя из основных задач вагонного хозяйства в процессе технической эксплуатации вагонов основными параметрами работы ППВ и ПТО
    (показателями функционирования) являются параметры, определяющие экономическую эффективность эксплуатации вагонов:

    вероятность и продолжительность простоя составов (групп вагонов) в ожидании ТОВ;

    вероятность и продолжительность простоя обслуживающих бригад.
    Подобные задачи, связанные с организацией обслуживания решают методами теории массового обслуживания (ТМО). Эта теория основана на теории вероятностей (теория случайных процессов) и на методах статистического моделирования случайных процессов (с использованием
    ЭВМ).
    С позиций теории массового обслуживания ППВ и ПТО являются системами массового обслуживания.
    В соответствии с терминологией ТМО составы или группы вагонов, предъявляемые для ТО, называют заявками (требованиями) на обслуживание, а обслуживающие бригады – каналами обслуживания (бригадой считается группа рабочих, которая может обслуживать одновременно один состав).
    Система ТОВ может быть одноканальной (одна бригада) или многоканальной (число бригад две или более).
    Системой с ожиданием называют системы, в которых заявки могут ожидать обслуживания.
    Каждая система массового обслуживания характеризуется потоками: входящим – заявок на обслуживание и выходящим – обслуженных заявок.
    Исследованиями этих потоков ТОВ доказано, что входящий, а

    4 следовательно, и выходящий потоки являются потоками Пуассона
    (простейшими).
    Такие потоки удовлетворяют следующим требованиям:

    ординарности, т.е. одновременное или близкое по времени поступление двух заявок маловероятно;

    стационарности, т.е. количество заявок в среднем в единицу времени одинаково.
    Интервалы времени между заявками распределяются по экспоненциальному (показательному) закону с параметром λ.
    𝑓(𝜏) = λ e
    −λt
    ; 𝐹(𝜏 < 𝜏̅) = e
    −λ.t
    (1) где λ – интенсивность потока заявок;
    τ – интервал поступления заявок.
    λ =
    1
    𝜏̅
    (2) где 𝜏̅– среднее значение (математическое ожидание) интервала поступления заявок.
    Вероятность поступления в систему k заявок за время t
    𝑃
    𝑘
    (t) =
    (λt)
    𝑘
    𝑘!
    e
    −λt при 𝑘 ≥ 0
    (3)
    Такой поток является однородным, т.к. величина λ не зависит от t.
    Интенсивность потока обслуживания:
    μ =
    1
    𝜏̅
    (4) где 𝜏̅- среднее время обслуживания.

    5
    Если время обслуживания задано (t
    0
    ), то
    μ =
    1
    𝑡
    0
    ̅
    Функции распределения времени обслуживания: дифференциальная −𝑓(𝑡) = 𝜇𝑒
    −𝜇𝑡
    интегральная −𝐹 (𝑡 < 𝑡̅) = 𝑒
    −𝜇𝑡
    Отношение
    ρ =
    λ
    𝜇
    является характеристикой режима системы обслуживания и называется коэффициентом загрузки системы.
    Если ρ < 1 – режим устойчивый.
    В случае ρ > 1 (λ > μ ) система не справляется с потоком заявок и очередь на обслуживание растет безгранично.
    Графически система ТОВ может быть представлена в виде графа состояний системы с переходами из одного состояния в другое. Для составления графа состояний представлена железнодорожная станция или парк этой станции (например, парк отправления) с количеством путей r и количеством каналов обслуживания (бригад) n.

    6
    Таблица 1- Схема формирования графика состояния системы ТОВ
    Схема состояния парка
    Характеристика состояния системы
    Граф состояний
    Нет составов, бригады простаивают k=0
    S
    0
    P
    0 01Один состав.
    Одна бригада простаивает kS
    1
    P
    1
    Два состава. Обе бригады заняты k=n
    S
    2
    P
    2
    Три состава. Один состав ожидает ТО k>n
    S
    3
    P
    3
    Четыре состава. Два состава ожидают ТО k>n
    S
    4
    P
    4

    7
    Расчетная часть
    Интенсивность потока заявок λ находим по формуле.
    λ =
    1
    τ
    (
    1)
    Где τ – интервал поступления заявок
    τ
    ПП
    =
    12 12
    = 1 ч
    τ
    ПО
    =
    14 12
    = 1,667 ч
    λ
    ПП
    =
    1 1
    = 1
    λ
    ПО
    =
    1 1,667
    = 0,857
    Интенсивность потока обслуживания по формуле:
    μ =
    1
    𝑡
    0
    (
    2)
    Где t
    0
    – время отбслуживания.
    μ
    пп
    =
    1 0,5
    = 2
    μ
    по
    =
    1 0,75
    = 1,333
    Коэффициент загрузки системы по формуле:
    ρ =
    λ
    μ
    (
    3)
    ρ
    ПП
    =
    1 2
    = 0,5

    8
    ρ
    ПО
    =
    0,857 1,333
    = 0,643
    ρ < 1 – режим устойчивый.
    В соответствии с данным правилом получается следующая система уравнений:
    {
    𝜆𝑃
    0
    + 2𝜇
    0
    𝑃
    2
    − 𝜆𝑃
    1
    − 𝜇
    0
    𝑃
    1
    = 0
    𝜆𝑃
    1
    + 2𝜇
    0
    𝑃
    3
    − 𝜆𝑃
    2
    − 𝜇
    0
    𝑃
    2
    = 0
    𝜆𝑃
    2
    − 2𝜇
    0
    𝑃
    3
    = 0
    𝑃
    0
    = 1 − (𝑃
    1
    + 𝑃
    2
    + 𝑃
    3
    )
    ;
    (
    1)
    Для ПП:
    В дальнейшем необходимо последовательно решить все четыре уравнения системы 1. Преобразуем уравнение 1 системы.
    𝜆𝑃
    0
    + 2𝜇
    0
    𝑃
    2
    − 𝜆𝑃
    1
    − 𝜇
    0
    𝑃
    1
    = 0
    −(𝜆 + 𝜇
    0
    )𝑃
    1
    + 2𝜇
    0
    𝑃
    2
    + 𝜆𝑃
    0
    = 0
    Подставив в уравнение интенсивность потока обслуживания, интенсивность подачи вагонов и подставив 𝑃
    0
    из уравнения 4 системы 1 найдем 𝑃
    1
    −(𝜆 + 𝜇
    0
    )𝑃
    1
    + 2𝜇
    0
    𝑃
    2
    + 𝜆(1 − 𝑃
    1
    − 𝑃
    2
    − 𝑃
    3
    ) = 0;
    −(1 + 2)𝑃
    1
    + 2 ∗ 2𝑃
    2
    + 1(1 − 𝑃
    1
    − 𝑃
    2
    − 𝑃
    3
    ) = 0;
    −3𝑃
    1
    + 4𝑃
    2
    + 1 − 𝑃
    1
    − 𝑃
    2
    − 𝑃
    3
    = 0;
    −4𝑃
    1
    + 3𝑃
    2
    − 𝑃
    3
    + 1 = 0;
    𝑃
    1
    = 0,75𝑃
    2
    − 0,25𝑃
    3
    + 0,25;
    Преобразуем уравнение 2 системы 1:

    9
    −( 𝜆 + 2𝜇
    0
    )𝑃
    2
    + 𝜆𝑃
    1
    + 2𝜇
    0
    𝑃
    3
    = 0.
    Подставим уравнение 2 системы 1 интенсивность потока обслуживания, интенсивность подачи вагонов и подставив 𝑃
    1
    найдем
    𝑃
    2
    −( 1 + 2 ∗ 2)𝑃
    2
    + 0,75𝑃
    2
    − 0,25𝑃
    3
    + 0,25 + 2 ∗ 2𝑃
    3
    = 0
    −4𝑃
    2
    + 0,75𝑃
    2
    − 0,25𝑃
    3
    + 0,25 + 4𝑃
    3
    = 0
    −3,25𝑃
    2
    + 3,75𝑃
    3
    + 0,25 = 0
    𝑃
    2
    = 1,154𝑃
    3
    + 0,077
    Подставим уравнение 3 системы 1 интенсивность потока обслуживания, интенсивность подачи вагонов и подставив 𝑃
    2
    найдем
    𝑃
    3
    𝜆𝑃
    2
    − 2𝜇
    0
    𝑃
    3
    = 0 1,154𝑃
    3
    + 0,077 − 2 ∗ 2𝑃
    3
    = 0 1,154𝑃
    3
    + 0,077 − 4𝑃
    3
    = 0
    −2,846𝑃
    3
    + 0,077 = 0
    𝑃
    3
    = 0,027
    Далее выполняем обратные действия и подставляем 𝑃
    2
    в
    𝑃
    3
    тем самым находим 𝑃
    2
    :
    𝑃
    2
    = 1,154 ∗ 0,027 + 0,077 = 0,108
    Подставляем 𝑃
    2
    и
    𝑃
    3
    в
    𝑃
    1
    тем самым находим
    𝑃
    1
    :
    𝑃
    1
    = 0,75 ∗ 0,108 − 0,25 ∗ 0,027 + 0,25 = 0,324
    𝑃
    0
    = 1 − (0,324 + 0,108 + 0,027) = 0,541

    10
    Среднее количество заявок, ожидающих ТО (среднее количество свободных каналов) находится по формуле 3:
    𝑀
    1(2)
    = 𝑁 ∙ 𝑃
    3(0)
    ,
    (
    3) где 𝑃
    3(0)
    – вероятность простоя;
    N – количество составов.
    𝑀
    1
    = 12 ∙ 0,027 = 0,324
    𝑀
    2
    = 12 ∙ 0,541 = 6,492
    Коэффициент простоя обслуживаемых заявок (составов) находится по формуле 4:
    𝐾
    1
    =
    𝑀
    1
    𝑚
    ,
    (
    4) где 𝑀
    1
    – среднее количество заявок, ожидающих ТО;
    m – наибольшее количество заявок в системе.
    𝐾
    1
    =
    0,324 3
    = 0,108
    Коэффициент простоя каналов обслуживания (бригад) находится по формуле 5:
    𝐾
    2
    =
    𝑀
    2
    𝑛
    ,
    (
    5) где 𝑀
    2
    – среднее количество свободных каналов обслуживания
    (бригад);
    𝑛 – количество каналов в системе.
    𝐾
    2
    =
    6,492 2
    = 3,246

    11
    Для ПО:
    Подставив в уравнение интенсивность потока обслуживания, интенсивность подачи вагонов и подставив 𝑃
    0
    из уравнения 4 системы 1 найдем 𝑃
    1
    −(𝜆 + 𝜇
    0
    )𝑃
    1
    + 2𝜇
    0
    𝑃
    2
    + 𝜆(1 − 𝑃
    1
    − 𝑃
    2
    − 𝑃
    3
    ) = 0;
    −(0,857 + 1,333)𝑃
    1
    + 2 ∗ 1,333𝑃
    2
    + 0,857(1 − 𝑃
    1
    − 𝑃
    2
    − 𝑃
    3
    ) = 0
    −2,19𝑃
    1
    + 2,666𝑃
    2
    + 0,857 − 0,857𝑃
    1
    − 0,857𝑃
    2
    − 0,857𝑃
    3
    = 0
    −3,047𝑃
    1
    + 1,809𝑃
    2
    − 1,715𝑃
    3
    + 0,857 = 0
    𝑃
    1
    = 0,594𝑃
    2
    − 0,562𝑃
    3
    + 0,281
    Преобразуем уравнение 2 системы 1:
    −( 𝜆 + 2𝜇
    0
    )𝑃
    2
    + 𝜆𝑃
    1
    + 2𝜇
    0
    𝑃
    3
    = 0.
    Подставим уравнение 2 системы 1 интенсивность потока обслуживания, интенсивность подачи вагонов и подставив 𝑃
    1
    найдем
    𝑃
    2
    −( 0,857 + 2 ∗ 1,333)𝑃
    2
    + 0,857 ∗ (0,594𝑃
    2
    − 0,562𝑃
    3
    + 0,281) + 2 ∗ 1,333𝑃
    3
    = 0
    −3,523𝑃
    2
    + 0,509𝑃
    2
    − 0,482𝑃
    3
    + 0,241 + 2,666𝑃
    3
    = 0
    −3,014𝑃
    2
    + 2,184𝑃
    3
    + 0,241 = 0
    𝑃
    2
    = 0,724𝑃
    3
    + 0,08
    Подставим уравнение 3 системы 1 интенсивность потока обслуживания, интенсивность подачи вагонов и подставив 𝑃
    2
    найдем
    𝑃
    3
    𝜆𝑃
    2
    − 2𝜇
    0
    𝑃
    3
    = 0 0,857 ∗ (
    0,724𝑃
    3
    + 0,08
    )
    − 2 ∗ 1,333𝑃
    3
    = 0

    12 0,62𝑃
    3
    + 0,069 − 2,666𝑃
    3
    = 0
    −2,046𝑃
    3
    + 0,069 = 0
    𝑃
    3
    = 0,034
    Далее выполняем обратные действия и подставляем 𝑃
    3
    в
    𝑃
    2
    тем самым находим 𝑃
    2
    :
    𝑃
    2
    = 0,724 ∗ 0,034 + 0,08 = 0,105
    Подставляем 𝑃
    2
    и
    𝑃
    3
    в
    𝑃
    1
    тем самым находим
    𝑃
    1
    :
    𝑃
    1
    = 0,594 ∗ 0,105 − 0,562 ∗ 0,034 + 0,281 = 0,324
    𝑃
    0
    = 1 − (0,324 + 0,105 + 0,034) = 0,537
    Среднее количество заявок, ожидающих ТО (среднее количество свободных каналов) находится по формуле 3:
    𝑀
    1(2)
    = 𝑁 ∙ 𝑃
    3(0)
    ,
    (
    3) где 𝑃
    3(0)
    – вероятность простоя;
    N – количество составов.
    𝑀
    1
    = 14 ∙ 0,034 = 0,476
    𝑀
    2
    = 14 ∙ 0,537 = 7,518
    Коэффициент простоя обслуживаемых заявок (составов) находится по формуле 4:
    𝐾
    1
    =
    𝑀
    1
    𝑚
    ,
    (
    4) где 𝑀
    1
    – среднее количество заявок, ожидающих ТО;
    m – наибольшее количество заявок в системе.

    13
    𝐾
    1
    =
    0,476 3
    = 0,159
    Коэффициент простоя каналов обслуживания (бригад) находится по формуле 5:
    𝐾
    2
    =
    𝑀
    2
    𝑛
    ,
    (
    5) где 𝑀
    2
    – среднее количество свободных каналов обслуживания
    (бригад);
    𝑛 – количество каналов в системе.
    𝐾
    2
    =
    7,518 2
    = 3,759
    Вывод: в ходе работы были определены параметры пунктов технического обслуживания вагонов, найдены коэффициенты загрузки системы, для парка прибытия он составляет 0,5 < 1 – режим устойчивый, а для парка отправления 0,643 < 1, так же режим устойчивый. Хотя в обоих парках режим устойчивый, коэффициент загрузки достаточно мал, система недогружена. Для увеличения эффективности работы ПТО предлагаю уменьшить численный состав бригад.


    написать администратору сайта