КР_Нейросетевые_технологии. Отчет по работе должен содержать структурную схему обученной сети без указания весов. Графики аппроксимируемой и полученной последовательности для нескольких приближений параметров hidden и threshold
Скачать 412.08 Kb.
|
Лаба 1 Задание 1 Смоделировать заданную функцию на отрезке [0, 8] с использованием библиотеки neuralnet. Отчет должен содержать подготовку данных для обучения сети. Обоснование выбранной архитектуры. Структурную схему обученной сети с указанием весов. Графики моделируемой и смоделированной функций. Лаба 1 Задание 2 Подобрать структуру hidden и порог функции ошибки threshold для точной аппроксимации заданных последовательностей импульсов. Отчет по работе должен содержать структурную схему обученной сети без указания весов. Графики аппроксимируемой и полученной последовательности для нескольких приближений параметров hidden и threshold. Лаба 2 Составить прогноз для заданного временного ряда с использованием библиотеки nnet. Отчет должен содержать подготовку данных для обучения сети. Обоснование выбранной архитектуры. Структурную схему обученной сети без указания весов. Лабораторная работа № 4 Построить автокодировщик для заданной обучающей выборки. Отчет должен содержать подготовку данных для обучения сети. Формирование формул для входа и выхода. Визуализацию обучающей выборки и восстановленного образца. Структурную схему обученной сети без указания весов. Варианты заданий приведены в табл., где указаны названия файлов с обучающей выборкой, которые доступны из библиотеки RSNNS Лабораторная работа № 5 Построить карты Кохонена для тестовых наборов из ресурса Wine Quality (http://archive.ics.uci.edu/ml/machine-learning-databases/winequality/). |