Главная страница

отчет по практике. Отчет по учебной практике Выполнил студент группы бгбзс1211 Гарипов И. Ф. Проверил преподователь Нафикова Р. А


Скачать 1.24 Mb.
НазваниеОтчет по учебной практике Выполнил студент группы бгбзс1211 Гарипов И. Ф. Проверил преподователь Нафикова Р. А
Анкоротчет по практике.doc
Дата14.04.2017
Размер1.24 Mb.
Формат файлаdoc
Имя файлаотчет по практике.doc
ТипОтчет
#4798
страница7 из 8
1   2   3   4   5   6   7   8

БУРЕНИЕ СКВАЖИН С КУСТОВЫХ ПЛОЩАДОК

Кустовым бурением называют такой способ, при котором устья скважин находятся на общей площадке сравнительно небольших размеров, а забои в соответствии с геологической сеткой разработки месторождения. Впервые этот способ был применен в 1934 г. на Каспии, затем стал использоваться в Пермском нефтяном районе. Особенно бурное развитие он получил в Западной Сибири, где в настоящее время более 90 % объема бурения выполняется с кустовых площадок.
Бурение скважин кустовым способом имеет целый ряд существенных преимуществ. Прежде всего, это экономически выгодно, так как при этом значительно сокращаются затраты средств и времени на обустройство площадок под скважины, подъездных путей к ним и других коммуникаций, существенно уменьшаются затраты времени на вышкостроение, промысловое обустройство скважин, их эксплуатационное обслуживание и ремонт.
Кроме того, кустовое бурение выгодно и с экологической точки зрения, так как позволяет значительно уменьшить площадь земель, занимаемых под буровыми, а также снизить затраты на природоохранные мероприятия.
Однако широкое развитие кустового способа бурения потребовало разработки новых технологий направленного бурения, новых технических средств и оборудования.



При бурении скважин с кустовых площадок в связи с тем, что устья скважин располагаются близко друг к другу, возможны тяжелые аварии, связанные с пересечением стволов двух скважин. Для предотвращения этого явления при проектировании необходимо учитывать ряд дополнительных факторов. Основной принцип проектирования состоит в том, что в процессе бурения стволы скважин должны отдаляться друг от друга. Это достигается, во-первых, оптимальным направлением движения станка (НДС) на кустовой площадке, во-вторых, соответствующей очередностью разбуривания скважин и, в-третьих, безопасной глубиной зарезки наклонного ствола.
Наиболее оптимальным вариантом бурения с кустовой площадки является такой, при котором направления на проектные забои скважин близки перпендикулярным по отношению к НДС, а совпадение НДС и направлений на проектные забои нежелательно и должно быть минимальным (рис. 7.11.).
После определения НДС производится проектирование очередности бурения скважин. Она зависит от величины угла, измеряемого от НДС до проектного направления на забой скважины по ходу часовой стрелки. В первую очередь бурятся скважины, для которых этот угол составляет 120-240О (I сектор), причем сначала скважины с большими зенитными углами (рис. 7.12.)



Рис. 14. Очередность разбуривания
скважин с кустовых площадок

Во вторую очередь - скважины, горизонтальные проекции которых образуют с НДС угол, равный 60-120О и 240-300О (II сектор), и вертикальные скважины. В последнюю очередь бурятся скважины, для которых указанный угол ограничен секторами 0-60О и 300-360О (III сектор), причем сначала скважины с меньшими зенитными углами.
Глубина зарезки наклонного ствола при бурении скважин I и II секторов для первой скважины принимается минимальной, а для последующих - увеличивается. Во II секторе допускается для последующих скважин глубину зарезки наклонного ствола уменьшать только в том случае, если разность в азимутах забуривания соседних скважин составляет 90О и более. Для скважин III сектора глубина зарезки наклонного ствола для очередной скважины принимается меньшей, чем для предыдущей.
Расстояние по вертикали между точками забуривания наклонного ствола для двух соседних скважин, согласно действующей инструкции [4], должно быть не менее 30 м, если разность в проектных азимутах стволов составляет менее 10О; не менее 20 м, если разность азимутов 10-20О; и не менее 10 м во всех остальных случаях.
Непосредственно в процессе бурения для предотвращения пересечения стволов необходимо обеспечить вертикальность верхней части ствола. Даже небольшое искривление в 1-2О на этом участке, особенно в направлении движения станка, может привести к пересечению стволов. Для предотвращения искривления необходимо проверить центровку буровой вышки, горизонтальность стола ротора, прямолинейность всех элементов КНБК, соосность резьб. В процессе бурения на план куста необходимо наносить горизонтальные проекции всех скважин. Однако истинное положение ствола может отличаться от расчетного. Это объясняется погрешностями при измерениях параметров искривления и ошибками графических построений. Поэтому зона вокруг ствола скважины с некоторым радиусом r, равным среднеквадратической ошибке в определении положения забоя, считается опасной с точки зрения пересечения стволов. Величина этого радиуса с достаточной степенью точности может быть принята равной 1,5 % текущей глубины скважины за вычетом вертикального участка, но не менее 1,5 м. Если в процессе бурения соприкасаются опасные зоны двух скважин, то необходимо замеры параметров искривления производить через 25 м проходки двумя инклинометрами и применять лопастные долота, что снижает вероятность повреждения обсадной колонны в ранее пробуренной скважине. Чаще же, как показывает практика, пересечение стволов возникает из-за неточностей в ориентировании и несвоевременных замерах параметров искривления.
10. Компоновка бурильного инструмента, применяемые при бурении различных интервалов. Характерные виды износа труб и замков. Контроль за состоянием бурильных труб и отбраковка.

Основное назначение бурильной колонны обеспечить гидравлическую и механическую связь работающего на забое долота и ствола скважины с поверхностным механическим и гидравлическим оборудованием. Одновременно бурильная колонна служит инструментом для доставки на глубину буровых и колонковых долот, различных исследовательских приборов и устройств, снарядов и аварийно-ликвидационных приспособлений.
Две главные функции выполняет бурильная колонна в процессе проходки ствола:

вращает долото и одновременно передает на него осевую нагрузку;

создает замкнутую циркуляцию агента через забой скважины, обеспечивая очистку ствола от выбуренной породы и привод погружных гидравлических двигателей.
Бурильная колонна включает следующие основные элементы сверху вниз: рабочую (ведущую) трубу бурильные трубы, утяжеленные бурильные трубы (УБТ) .
Рабочая труба, обычно квадратного сечения, служит для передачи вращения от ротора к бурильной колонне. Она фиксируется в отверстии ротора квадратными клиньями, вкладышами, в связи с чем вращается совместно со столом ротора и одновременно может перемещаться в осевом направлении по мере углубления забоя скважины. Соединяется рабочая труба при помощи нижнего переводника с верхней трубой бурильной колонны, а при помощи верхнего переводника — с вращающимся стволом вертлюга — устройством, связывающим нагнетательную линию

бурового насоса, подающего промывочный агент, с вра­щающейся бурильной колонной.

Заводами выпускаются ведущие трубы со сторонами квадратного сечения 112, 140 и 155 мм, с диаметром внутреннего канала соответственно 74, 85 и 100 мм. Длина ведущей трубы 13-14 м, материал - сталь группы прочности Д и марки 36Г2С.

Бурильная колонна может компоноваться из труб следующих конструкций:

с высаженными внутрь концами;

с высаженными наружу концами;

с приваренными соединительными концами;

с блокирующим пояском;

беззамковые раструбные;

Трубы первых двух конструкций имеют наружную мелкую трубную резьбу и соединяются между собой при помощи бурильных замков или муфт. Трубы второй конструкции имеют по сравнению с трубами первой конструкции улучшенную гидравлическую характеристику, так как в них равнопроходной канал и, следовательно, минимальны местные гидравлические сопротивления потоку промывочного агента.

Бурильные трубы с приваренными соединительными концами имеют равнопроходной канал и соединяются друг с другом при помощи крупной замковой резьбы.

В бурильных трубах с блокирующим пояском вблизи резьбы по телу имеется проточка, на которую в горячем состоянии наворачивается часть замка с внутренней проточкой, в результате чего, после остывания, создается герметичный напряженный контакт между замком и трубой.

Промышленность выпускает бурильные трубы диаметром от 60 до 168мм. и толщиной 6; 8; 11,5−12,0мм. из стали групп прочности С, Д, Е, К, L, М.

Бурильные трубы многократно соединяются в бурильную колонну по мере проводки ствола скважины так как необходимо периодически заменять износившееся долото на новое и выполнять другие работы в скважине, требующие спускоподъемных операций с бурильной колонной. Крупная замковая резьба со значительной конусностью позволяет быстро, за несколько оборотов, свинчивать и развинчивать трубы, при этом герметич­ность обеспечивается напряженным контактом торцевых поверхностей замков.

Для соединения бурильных труб используют замки трех типов:

ЗШ с диаметром канала, близкого к диаметру канала бурильных труб с высаженными внутрь концами;

ЗН с диаметром канала существенно меньшим диаметра канала труб;

ЗУ с увеличенным диаметром канала.

Замки первых двух типов используют для бурильных труб с высаженными внутрь концами, а замки последнего типа — для труб с высаженными наружу концами. Замки типа ЗУ предпочтительны для турбинного бурения, так как не создают значительных местных гидравлических сопротивлений потоку промывочного агента.

Для проводки стволов нефтегазовых скважин чаще всего используют бурильные трубы диаметром 114, 121, 146 и 168 мм. Их соединяют по две-три штуки в свечи, которые устанавливают вертикально внутри вышки на специальный подсвечник и тем самым значительно ускоряют и облегчают спускоподъемные операции.

При больших глубинах скважин нагрузки на вышку и талевую систему буровой установки во время спускоподъемных операций могут достигать недопустимых значений за счет силы тяжести бурильной колонны. В связи с этим вместо стальных труб в ряде случаев используют бурильные трубы из прочных алюминиевых сплавов, которые позволяют, при прочих равных условиях, снизить эти нагрузки по меньшей мере в 2 раза. Промышленность выпускает легкосплавные бурильные трубы с высаженными внутрь концами диаметром от 73 до 147 мм. На концах легкосплавных труб нарезана трубная резьба, а их соединение в виде бурильной колонны осуществляют навинчиваемыми на них стальными замками.
Важным элементом бурильной колонны являются утяжеленные бурильные трубы, одна из главных функций которых - создавать осевую нагрузку на долото, не допуская изгиба бурильной колонны. УБТ устанавливают непосредственно над долотом или погруженным двигателем. Трубы массивные за счет большой толщины стальной стенки (толщина стенок УБТ в несколько раз больше толщины стенок обычных бурильных труб).
Необходимым элементом в состав бурильной колонны входят различные переводники, предназначенные для соединения ведущей трубы с верт­люгом и бурильными трубами, бурильных труб с УБТ, УБТ с турбобуром или долотом.
Кроме того, бурильная колонна может оснащаться центраторами для предотвращения изгиба бурильной колонны и одностороннего примыкания ее к стенке ствола скважины, расширителями - долотами для увеличения диаметра ствола, кривыми переводниками и соапстоками для искривления ствола скважины в заданном направлении.
Все элементы бурильной колонны постоянно находятся под действием различных по характеру сил:

осевой растягивающей нагрузки от собственного веса и перепада давления на долоте и в забойном двигателе;

осевой сжимающей нагрузки от собственного веса;

усилия, создающего изгибающий момент при вращении колонны;

усилия, создающего крутящийся момент, необходимый для вращения долота в процессе бурения;

усилия реактивного момента забойного двигателя;

силы от действия гидравлического давления бурового раствора в осевом и радиальном направлениях;

сил трения о стенки скважины и обсадной колонны;

осевых нагрузок, возникающих при затяжках и посадках бурильной колонны;

инерционных сил при спускоподъемных операциях изгибающих усилий в интервалах искривления ствола скважины;

изгибающих усилий при морском бурении из-за перемещений бурового судна;

усилий от продольных, поперечных и крутильных колебаний из-за неуравновешенности вращающейся бурильной колонны, неустойчивости работы забойного двигателя и неоднородности разбуриваемых пород.

Характер действующих на бурильную колонну сил переменный как по длине, так и во времени. Поэтому практически задачи о напряжениях це­лесообразно решать лишь для предельных, наиболее опасных случаев с целью выработки конкретных рекомендаций об ограничивающих критических параметрах процессов, гарантирующих безаварийную длительную работу качественной бурильной колонны.

Особенностью работы бурильной колонны является то, что она подобно длинному тонкому стержню, подверженному воздействию продольных, поперечных сил и крутящего момента, теряет устойчивость прямолинейной формы равновесия.

Каждая из упомянутых выше сил вследствие значительной длины колонны способна вызвать потерю ее устойчивости.

В результате нарушается прямолинейная форма равновесия, и устойчивой становится изогнутая форма равновесия бурильной колонны. Центробежные силы вызывают изгиб колонны в форме плоской волнообразной кривой, а крутящий момент придает бурильной колонне форму пространственной спирали. Так, что ось бурильной колонны принимает форму пространственной спирали - изогнутой кривой переменного шага, значение которого возрастает в направлении от забоя к устью скважины.

Действующие на колонну растягивающие осевые силы увеличивают длину полуволны и шаг спирали. Сжимающие осевые силы, наоборот, уменьшают длину полуволны и шаг спирали. Шаг спирали обычно существенно больше длины полуволны, так как крутящий момент незначительно влияет на форму искривления.

Потеря прямолинейной формы равновесия бурильной колонны может привести к значительным ее деформациям, но в условиях скважины значе­ние деформации ограничено стенками скважины, что позволяет вести бурение при искривленной форме равновесия бурильной колонны.

Промысловые материалы убеждают, что соприкосновение изогнутой бурильной колонны со стенками скважины при вращении происходит, как правило, в местах установки замков. Такая форма изгиба объясняется тем, что жесткость замков в несколько раз больше жесткости бурильных труб, и это в значительной степени предопределяет положение мест перегиба оси изогнутой бурильной колонны. Бурильные замки и трубы, соприкаса­ясь со стенками скважины или обсадной колонны, истираются. В практике бурения отмечается как равномерный, так и односторонний износ замков и труб по наружной поверхности, что может быть объяснено характером вращения колонны в скважине. При вращении изогнутой колонны вокруг оси скважины происходит преимущественно односторонний износ замков и труб. Изгиб колонны в этом случае может быть следствием осевых сжимающих усилий, центробежных сил или крутящего момента. Равномерный износ поверхности замка или трубы происходит при вращении бурильной колонны вокруг собственной оси. Такое вращение возможно при значительном трении колонны о стенку скважины, когда вращение вокруг оси скважины полностью прекращается, а возможность вращения вокруг собственной оси сохраняется.
Вращение изогнутой под действием центробежных сил бурильной колонны вокруг оси скважины не должно приводить к изменению знака на­пряжения.
Возникновению переменных напряжений в бурильной колонне способствует эксцентричное расположение труб в скважине, так как в этом случае при вращении колонны значение прогиба полуволны, возникшей под действием центробежных сил, изменяется. При этом варьируют значения изгибающих напряжений за время одного оборота, что сопровождается ударами труб о стенку скважины с возможным изменением знака их кривизны. Аналогичные явления будут происходить, если в колонне имеется кривой элемент или резьбы труб несоосны. При значительном трении труб о стенки скважины может происходить их качение по стенке, сопровождающееся знакопеременным изгибом.
Если бурильная колонна вращается вокруг собственной оси, то имеют место знакопеременные изгибающие напряжения.

Реальная форма изгиба бурильной колонны достаточно сложная и изменяется для различных ее участков в зависимости от скорости вращения, действующих сил, расположения в скважине и т.д. Очевидно, что форма изгиба будет та, которая требует наименьшей затраты энергии.

При определенных условиях, когда частота собственных колебаний бурильной колонны совпадает с частотой колебаний возмущающих сил, зависящих от типа долота, скорости его вращения, осевой нагрузки, пульсации потока бурового промывочного раствора и других факторов, может возникнуть явление резонанса. Использование в нижней части колонны УБТ разгружает ее от осевых сжимающих сил, однако это не исключает наибольшего изгиба бурильной колонны выше УБТ

Характер нагрузок на бурильную колонну изменяется по глубине: вблизи устья действуют главным образом постоянные, а в призабойной зоне преобладают переменные нагрузки. Они зависят также от способа бурения: при турбинном бурении вследствие неподвижности бурильной колонны отсутствуют переменные напряжения изгиба, которые обычно являются причиной усталостных поломок труб и замков в роторном буре­нии, а при роторном бурении с увеличением глубины скважины возрастают потери мощности на холостое вращение и крутящий момент, необходи­мый для вращения колонны. С ростом длины колонны возрастает ее инерционность. Сопротивление разрушаемой на забое породы долоту может преодолеваться не только крутящим моментом от ротора, но и благодаря кинетической энергии самой бурильной колонны. При внезапной останов­ке долота кинетическая энергия колонны переходит в потенциальную энергию закрученной пружины, что может вызвать значительное увеличение касательных напряжений, особенно в нижних трубах колонны. Когда же совместным действием ротора и пружины-колонны преодолевается за­клинивание долота, то происходит обратный процесс перехода потенциальной энергии в кинетическую, что может вызвать в бурильной колонне колебательные явления. Инерционный эффект вала турбобура в турбинном бурении незначительный, так что бурильная колонна находится в более благоприятных рабочих условиях. Это отражает и статистика бурения скважин: при роторном бурении замки, бурильные трубы и обсадные колонны изнашиваются в значительно большей степени, чем при турбинном.
1   2   3   4   5   6   7   8


написать администратору сайта