отчет по практике. Отчет по учебной практике Выполнил студент группы бгбзс1211 Гарипов И. Ф. Проверил преподователь Нафикова Р. А
Скачать 1.24 Mb.
|
Режимные показатели бурения. Эффективность бурения зависит от комплекса факторов: осевой нагрузки на долото, частоты вращения долота, расхода бурового раствора и параметров качества бурового раствора, типа долота, геологических условий, механических свойств горных пород. Выделяют параметры режима бурения, которые можно изменять с пульта бурильщика в процессе работы долота на забое, и факторы, установленные на стадии проектирования строительства скважины, отдельные из которых нельзя оперативно изменять. Первые называются управляемыми. Определённое сочетание их, при котором осуществляется механическое бурение скважины, называется режимом бурения. Режим бурения, обеспечивающий получение наилучших показателей при данных условиях бурения, называется оптимальным. Иногда в процессе бурения приходится решать и специальные задачи – проводка скважины через поглощаюшие пласты, обеспечение минимального искривления скважины, максимального выхода керна, качественного вскрытия продуктивных пластов. Режимы бурения, при которых решаются такие задачи, называются специальными. Каждый параметр режима бурения влияет на эффективность разрушения горных пород, причём влияние одного параметра зависти от уровня другого, то есть наблюдается взаимовлияние факторов. Выделяют следующие основные показатели эффективности бурения нефтяных и газовых скважин: проходка на долото, механическая и рейсовая скорости бурения. Проходка на долото Hд (м) очень важный показатель, определяющий расход долот на бурение скважины и потребность в них по площади и УБР в целом, число СПО, изнашивание подъемного оборудования, трудоемкость бурения, возможность некоторых осложнений. Проходка на долото в большей мере зависит от абразивности пород, стойкости долот, правильности их подбора, режимов бурения и критериев отработки долот. Механическая скорость (Vм): Vм = Hд / Тм где Hд - проходка на долото, м; Тм - продолжительность механического разрушения горных пород на забое или время проходки интервалов, ч. Таким образом, Vм - средняя скорость углубления забоя. Она может быть определена по отдельному долоту, отдельному интервалу, всей скважине Lс, по УБР и т.д.: Vм = Lс / Тм Выделяют текущую (мгновенную) механическую скорость: Vм = dh / dt При известных свойствах горных пород механическая скорость характеризует эффективность разрушения их, правильность подбора и отработки долот, способа бурения и режимных параметров, величину подведенной на забой мощности и ее использование. Если в одинаковых породах и интервалах одной скважины скорость ниже, чем в другой, надо улучшать режим. Изменение текущей механической скорости связано с изнашиванием долота, чередованием пород по твердости, изменением режимных параметров в процессе отработки долота, свидетельствует о целесообразности подъема долота. Рейсовая скорость Vр = Hд / (Тм + Тсп) где Hд - проходка на долото, м; Тм – продолжительность работы долота на забое, ч; Тсп – продолжительность спуска и подъема долота, наращивания инструмента, ч. Рейсовая скорость определяет темп углубления скважины, она показывает, что темп проходки ствола зависит не только от отработки долота, но и от объема и скорости выполнения СПО. Если долго работать изношенным долотом или поднимать долото преждевременно, то Vр снижается. Долото, поднятое при достижении максимума рейсовой скорости, обеспечивает наиболее быструю проходку ствола. Средняя рейсовая скорость по скважине выражается: Vр = Lс / (Тм + Тсп) Влияние осевой нагрузки на режим бурения. Разрушение горной породы на забое механическим способом невозможна без создания осевой нагрузки на долото. На рис. 5.1. показана зависимость механической скорости бурения Vм от осевой нагрузки G на трёхшарошечное долото при проходке мягких (кривая 1), средней твёрдости (кривая 2), твёрдых (кривая 3) и крепких (кривая 4) пород при неизменной низкой (до 60 об/мин) частоте вращения и достаточной промывке за короткий промежуток времени, когда изнашиванием долота можно пренебречь. Как видно из рисунка, механическая скорость непрерывно возрастает с увеличением осевой нагрузки, но темп её роста для мягких пород более быстрый, так как больше глубина погружения зубьев при одинаковой нагрузке. На стенде, и в промысловых условиях наблюдается изменение темпа роста Vм от G при переходе от разрушения пород истиранием при небольшой осевой нагрузке к разрушению пород в усталостной и объёмной областях при больших нагрузках. Если скорость вращения долота неизменна и обеспечивается достаточная чистота забоя, величина углубления за один оборот у возрастает с увеличением удельной осевой нагрузки Руд так, как это показано на рис. 5.2. (кривая ОАВС). При весьма малой нагрузке напряжение на площадке контакта зуба шарошки с породой меньше предела усталости последней; поэтому при вдавливании происходит лишь упругая деформация породы (участок ОА). Разрушение же породы в этой зоне, которую обычно называют областью поверхностного разрушения, может происходить путём истирания и, возможно, микроскалывания шероховатостей поверхности при проскальзывании зубка. Если нагрузка более высокая (участок АВ), то давление на площадки контакта зубка с забоем превышает предел усталости, но меньше предела прочности породы. Поэтому при первом ударе зубка по данной площадке происходит деформация породы, возможно, образуются начальные микротрещины, но разрушения ещё не происходит. При повторных ударах зубков по той же площадке начальные микротрещины развиваются вглубь до тех пор, пока при очередном ударе не произойдёт выкол. Чем больше действующая на зубок сила, тем меньше ударов требуется для разрушения. Эту зону называют областью объёмно – усталостного разрушения. При более высоких нагрузках разрушение породы происходит при каждом ударе зубка. Поэтому участок правее точки В называют областью эффективного объёмного разрушения породы. В области ОА углубление за один оборот у мало и возрастает очень медленно, пропорционально удельной нагрузке на долото Руд. Под удельной нагрузкой понимают отношение нагрузки на долото G к его диаметру. В области усталостного разрушения углубление растет быстрее увеличения удельной нагрузки и зависимость между ними имеет степенной характер. В области эффективного объёмного разрушения породы углубление за один оборот быстро возрастает – примерно пропорционально удельной нагрузке (или несколько быстрее), если обеспечена достаточная очистка забоя. Характер зависимости между углублением за один оборот долота и удельной нагрузкой Руд существенно изменяется, как только очистка забоя становится недостаточной и на нём скапливаются ранее сколотые частицы, которые не успели переместиться в наддолотную зону. Такие частицы дополнительно измельчаются при новых ударах зубков шарошек по забою. Поэтому с ухудшением очистки забоя прирост углубления за один оборот долота с увеличением удельной нагрузки будет уменьшаться. Так, согласно кривой ОАВДЕ, полученной при бурении с секундным расходом промывочной жидкости Q1, углубление за 1 оборот быстро возрастает, до тех пор, пока удельная нагрузка не превышает Р111уд. При нагрузках выше Р111уд прирост углубления сначала замедляется, а затем (правее точки F) углубление за один оборот уменьшается из-за ухудшения очистки забоя. В случае же увеличения секундного расхода до Q2 влияние ухудшения очистки забоя становится заметным при более высокой удельной нагрузке (правее точки G на кривой АВGH). Влияние частоты вращения долота С изменением частоты вращения долота меняется число поражений забоя зубками шарошечного долота. При малой частоте вращения долота промежуток времени, в течение которого остаётся раскрытой трещина в породе, образующаяся при вдавливании зубка, достаточен для того, чтобы в эту трещину проник фильтрат бурового раствора (или сам раствор). Давления на частицу сверху и снизу практически сравниваются и трещина не может сомкнуться после отрыва зубка от породы. В этом случае отрыв сколотой частицы от забоя и её удаление облегчаются. При увеличении же частоты вращения уменьшается промежуток времени, в течение которого трещина раскрыта, и фильтрат может заполнять её. Если же этот промежуток станет весьма малым, фильтрат в трещину не успеет проникнуть, трещина после отрыва зубка шарошки от породы сомкнётся, а прижимающая сила и фильтрационная корка будут удерживать частицу, препятствовать её удалению с забоя. Поэтому на забое сохраниться слой сколотых, но не удалённых частиц, которые будут повторно размалываться зубцами долота. Влияние расхода бурового раствора. Непрерывная циркуляция бурового раствора при бурении должна обеспечивать чистоту ствола скважины и забоя, охлаждение долота, способствовать эффективному разрушению породы, предупреждать осложнения. Влияние расхода раствора на механическую скорость бурения показано на рис. 5.4. Как видно из рисунка, при неизменной осевой нагрузке и частоте вращения долота с увеличением секундного расхода бурового раствора улучшается очистка забоя и возрастает механическая скорость проходки. Однако увеличение секундного раствора эффективно лишь пока он не достигнет некоторой величины Qд, при Qмах механическая скорость проходки стабилизируется. Величина Qд зависит от конструкции долота, схемы очистки забоя, удельной осевой нагрузки, частоты вращения, твёрдости породы и свойств бурового раствора. При дальнейшем возрастании расхода начнёт преобладать повышение потерь напора на преодоление гидравлических сопротивлений в кольцевом пространстве, общее давление на забой начнёт расти и механическая скорость будет снижаться. Влияние свойств бурового раствора. На механическую скорость бурения влияют плотность, вязкость, фильтрация, содержание песка и ряд других параметров бурового раствора. Наиболее существенно оказывает влияние плотность бурового раствора. Это влияние объясняется в основном повышением гидростатического давления на забой и ростом перепада давления между скважиной и разбуриваемым пластом, в результате чего ухудшаются условия образования трещин, выкалываемые частицы прижимаются к массиву. Поэтому наиболее значительно влияние в области объёмного разрушения породы, а при бурении в области поверхностного разрушения и истирания оно незначительно. С понижением плотности в большей мере проявляется эффект неравномерного всестороннего сжатия, облегчающего разрушение пород. Чем выше проницаемость пород и больше водоотдача (фильтрация), меньше вязкость фильтрата, ниже частота вращения, больше продолжительность контакта, тем слабее влияние плотности раствора, поскольку давление на забое и на глубине выкола успевает выровняться. Особенности режимов вращательного бурения. Увеличение осевой нагрузки и частоты вращения, повышение плотности, вязкости и концентрации твёрдых частиц, снижение расхода ниже Qд, а также теплоёмкости, теплопроводности и смазывающих свойств буровых растворов, неравномерная (рывками) подача долота, продольные и поперечные колебания низа бурильной колонны, высокая температура на забое – всё это сокращает производительное время пребывания долота на забое. Однако конечная цель – не увеличение продолжительности пребывания долота на забое, а получение большей проходки на долото за возможно более короткое время. Поэтому если изменение какого-то параметра обуславливает сокращение продолжительности работы долота на забое, но одновременно увеличивается механическая скорость и повышается проходка на долото, то оно целесообразно. Так как параметры режима бурения взаимосвязаны, то наибольшая эффективность бурения достигается лишь при оптимальном сочетании этих параметров, зависящем от физико-механических свойств породы, конструкции долота, глубины залегания разбуриваемой породы и других факторов. Увеличение одного из параметров режима, например, осевой нагрузки, способствует повышению эффективности бурения лишь до тех пор, пока он не достигнет оптимального значения при данном сочетании других параметров. Увеличение рассматриваемого параметра выше этого оптимального значения может способствовать дальнейшему повышению эффективности бурения только в том случае, если одновременно будут изменены все или некоторые другие параметры (например, увеличен расход промывочной жидкости, уменьшена частота вращения). Измененному сочетанию других параметров режима соответствует новое оптимальное значение рассматриваемого. Изменение параметров режима возможно лишь в определённых пределах, которые зависят от прочности долота, особенностей способа бурения, технических параметров буровой установки и ряда других факторов. Регулировать расход бурового раствора можно тремя способами: заменой втулок одного диаметра в цилиндрах бурового насоса на втулки другого диаметра, изменением числа одновременно параллельно работающих буровых насосов, изменением числа двойных ходов поршней в насосе. При первых двух способах расход раствора можно изменять только ступенчато, при третьем возможно также плавное изменение. Второй из названных выше способов применяют, как правило, в случае изменения диаметра долота: при бурении верхнего участка скважины долотами большого диаметра используют два одновременно работающих насоса. При переходе к бурению следующего участка долотами меньшего диаметра один из насосов часто отключают. Менять втулки можно только в неработающем насосе. Поэтому в большинстве случаев расход жидкости в период работы долота на забое остаётся практически неизменным. Если продолжительность рейса велика (несколько десятков часов), расход к концу рейса может несколько уменьшиться вследствие возрастания утечек в насосе, обусловленного износом поршней. Гидравлическую мощность на забое можно регулировать изменением либо расхода бурового раствора, либо диаметра гидромониторных насадок в долоте, либо числа таких насадок. Очевидно, диаметр насадок можно изменить только при подготовке нового долота к спуску в скважину. Число же работающих насадок можно уменьшить так же в период работы долота на забое, если в поток жидкости в бурильных трубах сбросить шар соответствующего диаметра, он перекроет входное отверстие в одной из насадок и выключит её из работы. При этом скорости струй и перепад давлений в оставшихся работающих насадках возрастут, и соответственно увеличится гидравлическая мощность на забое. Такой способ регулирования гидравлической мощности на забое можно использовать тогда, когда рабочее давление в насосах меньше предельно допустимого при данном диаметре втулок в них. 6 Буровые долота применяемые в целом по УБР, показатели их работы. Износ вооружения и опор долот при бурении в различных горных породах. Долото основной элемент бурового инструмента для механического разрушения горной породы в процессе бурения скважины. Термин "долото" сохранился от раннего периода развития техники бурения, когда единственным способом проходки скважины было ударное бурение, при котором буровое долото имело сходство с плотничным инструментом того же наименования. По назначению различают 3 класса буровых долот: для сплошного бурения (разрушение горной породы по всему забою скважины), колонкового бурения (разрушение горной породы по кольцу забоя скважины с оставлением в её центральной части керна) и для специальных целей (зарезные долота, расширители, фрезеры и др.). По характеру воздействия на горные породы буровые долота делятся на 4 класса: дробящие, дробяще-скалывающие, истирающе-режущие и режуще-скалывающие. По виду рабочей (разрушающей горные породы) части выделяют шарошечные и лопастные буровые долота. Шарошечными буровыми долотами осуществляется большей частью общего объёма бурения нефтяных, газовых и взрывных скважин. Шарошечное буровое долото (или бурильная головка для колонкового бурения) состоит из (одной, двух, трёх, четырёх или шести конических) сферических или цилиндрических шарошек, смонтированных на подшипниках качения или скольжения (или их комбинации) на цапфах секций бурового долота. Основная разновидность шарошечных долот для сплошного бурения — трёхшарошечное долото (рис. 1, а), при бурении глубоких скважин получило распространение также одношарошечное буровое долото (рис. 1, б). В зависимости от конструкции корпуса шарошечные буровые долота разделяют на секционные и корпусные. В секционных корпус сваривается из отдельных (двух, трёх или четырёх) секций (лап), на цапфах которых монтируются шарошки; в корпусных — корпус литой, к нему привариваются лапы со смонтированными на их цапфах шарошками. Для присоединения буровых долот к бурильной колонне у секционных долот предусматривается наружная конусная резьба (ниппель), у корпусных — внутренняя конусная резьба (муфта). В СССР выпускаются 13 типов шарошечных долот сплошного бурения диаметрами 46-508 мм (ГОСТ 20692-75). По принципу воздействия на горные породы шарошечные буровые долота делятся на дробящие и дробяще-скалывающие. Буровые долота дробящего действия характеризуются минимальным скольжением зубьев при перекатывании шарошек по забою и отсутствием фрезерующего действия по стенке скважины периферийными зубьями; различают следующие их типы: Т — для бурения твёрдых пород, ТЗ — твёрдых абразивных пород, ТК — твёрдых пород с пропластками крепких, ТКЗ — твёрдых крепких абразивных пород, К — крепких пород, OK — очень крепких пород. Шарошечные буровые долота дробяще-скалывающего действия характеризуются увеличением скольжения зубьев при перекатывании шарошек по забою и стенке скважины. Типы буровых долот дробяще-скалывающего действия: М — для бурения мягких пород, МЗ — мягких абразивных пород, MC — пород мягких с пропластками средней твёрдости, МСЗ — мягких абразивных пород с пропластками средней твёрдости, С — пород средней твёрдости, СЗ — абразивных пород средней твёрдости, CT — пород средней твёрдости с пропластками твёрдых. Породоразрушающим элементом (вооружением) шарошечных буровых долот служат фрезерованные зубья или запрессованные твердосплавные зубки и комбинации зубьев с зубками на поверхности шарошек. Для повышения износостойкости фрезерованных зубьев шарошек от абразивного износа их наплавляют твёрдым сплавом, состоящим из зёрен карбидов вольфрама. Для уменьшения износа долота по диаметру периферийные венцы долот типов С, CT и Т имеют Г- или Т-образную форму. Геометрическая форма и параметры зубьев (высота, длина, шаг, а также смещение осей шарошек) различны (уменьшаются от типа М к типу Т) и зависят от физических свойств разбуриваемых горных пород. Современное вооружение шарошек буровых долот выполняется из вставных твердосплавных зубков с призматическими (типы МЗ, СЗ, МСЗ и ТЗ) и сферическими (тип ТК) рабочими головками. Опора шарошечных буровых долот в процессе вращения шарошки обеспечивает передачу осевой нагрузки от бурильной колонны через цапфы и тела качения вооружению шарошки, находящемуся в контакте с горными породами забоя скважины. В опорах буровых долот в качестве радиальных используются подшипники роликовые, шариковые и скольжения, радиально-упорных — шариковые подшипники, упорных — подшипники скольжения. На рис. 2 показаны наиболее известные схемы опор, которые применяют в шарошечных буровых долотах. В каждой опоре имеется замковый шариковый подшипник, удерживающий шарошку на цапфе и воспринимающий осевую составляющую нагрузку на долото. Число роликов и шариков в опоре шарошек и их размеры зависят от размера долота, схема опоры — от режима бурения. Долота, использующиеся для высокооборотного бурения (более 250 об/мин), имеют опору с телами качения без герметизации (серия 1АВ), для среднеоборотного бурения (до 250 об/мин) — опору по схеме ролик-шарик — скольжение — упорная пята без герметизации (серия 1АН) либо с герметизацией при помощи торцевой манжеты (серия 2АН). Долота для низкооборотного бурения (до 60 об/мин) имеют герметизированную маслонаполненную опору по схеме скольжение — шарик — скольжение — упорная пята с радиальной уплотняющей манжетой. В долотах с герметизированной маслонаполненной опорой в утолщённой части лапы имеется специальный резервуар со смазкой, в который вмонтирован эластичный мешок, изменяющий форму по мере увеличения давления при спуске долота в скважину и способствующий вытеснению смазки по смазочным каналам к трущимся элементам опоры. При этом уплотнительная манжета должна обеспечить герметичность опор со стороны торца шарошки. Это достигается жёсткостью торцевой манжеты и плотным прилеганием её к торцу шарошки. Для подвода промывочной жидкости через долото к забою скважины в шарошечных буровых долотах имеются специальные промывочные или продувочные устройства. В зависимости от конструктивного выполнения выделяют шарошечные буровые долота с центральной, боковой промывкой, а также продувкой воздухом. Буровые долота с центральной промывкой имеют одно отверстие в центре долота либо 3 отверстия или щели в корпусе (промывочной плите), через которые промывочная жидкость направляется на шарошки в центральную часть скважины. В долотах с боковой промывкой (гидромониторные буровые долота, рис. 3, а) промывочная жидкость через сопла направляется между шарошками в периферийную зону забоя скважины. В буровых долотах с продувкой воздухом (рис. 3, б), газом или воздушно-водяной смесью одна часть потока через центральное отверстие в корпусе долота подаётся на шарошки, другая — по специальным каналам в лапах и их цапфах поступает в полость опор шарошек для их охлаждения и очищения от бурового шлама. При бурении взрывных скважин в долотах с продувкой воздухом применяют обратные клапаны, которые обеспечивают немедленное закрытие центрального продувочного канала долота после прекращения подачи воздуха и тем самым не допускают засасывания частиц породы в полость корпуса долота над входом в продувочные каналы лап. Лопастные буровые долота предназначены для бурения вращательным способом мягких и средней твёрдости пород. Лопастные буровые долота (рис. 4, а, б, в) состоят из кованого корпуса с присоединительной резьбой, к которому привариваются 3 и более лопастей. У двухлопастного долота корпус и лопасти отштамповываются как одно целое. Для повышения износостойкости долот лопасти армируются твёрдым сплавом. Пластинки твёрдого сплава заплавляются на передней грани лопастей в специально профрезерованные пазы. Боковые (калибрующие стенку скважины) грани лопастей армируются цилиндрическими зубками (сплав ВК8-В), запрессовываемыми в просверленные отверстия. Промежутки между зубками наплавляются твёрдым сплавом. В СССР лопастные долота (ГОСТ 26-02-1282-75) с промывкой изготовляют с цилиндрическими отверстиями в корпусе (тип 2Л, диаметры 76-165,1 мм, скорость движения промывочной жидкости до 50 м/с) и сменными гидромониторными насадками в корпусе (тип ЗЛ, диаметры 120,6-469,9 мм, скорость промывочной жидкости не менее 90 м/с). Истирающе-режущие буровые долота (тип ЗИР) имеют диаметры 190,5-269,9 мм. Пикообразные буровые долота (тип П, диаметры 98,4-444,5 мм) изготовляют двух разновидностей: Ц — для разбуривания цементных пробок и металлических деталей низа обсадных колонн; R — для расширения ствола скважины. К лопастным относятся также буровые долота для ударно-канатного бурения. Для бурения без промывки скважины применяют шнековые долота (рис. 4, г). Для вспомогательных работ (разбуривания цементных мостов, металла в скважине) выпускаются фрезерные буровые долота: тип ФР в виде плоскодонных фрезеров, нижняя рабочая поверхность которых оснащена твердосплавными зубками или пластинками, выступающими над корпусом буровых долот; тип ДФТС с расположением твердосплавных зубков по 3 спиралям, имеющим плавный переход от центрального канала долота на рабочую сферу. Для бурения скважин с отбором керна применяют шарошечные и лопастные бурильные головки, которые изготовляют для специальных керноприёмных устройств со съёмным и несъёмным керноприёмниками. Колонковые долота со съёмным керноприёмником позволяют отбирать с забоя скважины керн без подъёма бурильной колонны. Керноприёмник с керном извлекают из скважины шлипсом, спускаемым в бурильные трубы со специальныой лебёдки, а бурильную головку поднимают только после её износа вместе с колонной. При работе колонковыми долотами с несъёмным керноприёмником для выноса керна из скважины необходимо поднимать всю бурильную колонну; при этом часто головки оказываются неизношенными. Кернообразующие элементы долот передают на керн минимальные поперечные усилия, что снижает вероятность его разрушения; промывочные каналы в бурильных головках расположены так, что струя промывочного раствора минует керноприёмник. Буровые долота и бурильные головки изготовляют из прочных и износостойких материалов, т.к. в процессе бурения на долото действуют осевые и ударные нагрузки, вращающий момент, а также давление и химическая активность промывочной жидкости. Для секций (лап) и шарошек буровых долот применяют хромникельмолибденовые, хромникелевые и никельмолибденовые стали. Выпускаются буровые долота и бурильные головки, оснащённые природными или синтетическими алмазами (см. Алмазное бурение). Некоторые типы долот изготовляют из сталей электрошлакового и вакуумно-дугового переплавов. Совершенствование буровых долот осуществляется в направлении улучшения их конструкций: создания новых схем опор с герметизированными маслонаполненными опорами для низкооборотного и высокооборотного бурения; применения новых форм твёрдосплавных зубков; изыскания более износостойких материалов; повышения точности изготовления деталей и сборки буровых долот, а также применения более совершенных схем подвода промывочной жидкости к забою скважины. Снаряды для колонкового бурения. Колонковое бурение проводят с целью получения из скважины образцов горных пород (кернов). Керн формируется на забое скважины в процессе ее углубления с помощью породоразрушающего инструмента, который разрушает горную породу лишь по кольцевому забою и оставляет в центре нетронутый целик породы (колонку). Отсюда специфическая особенность конструкции породоразрушающего инструмента для колонкового бурения состоит в том, что его вооружение располагается кольцеобразно вокруг свободного прохода для поступления керна. Рис 9. Одинарный колонковый снаряд Задача получения достаточно полноценных образцов из скважины определяет дополнительные требования к породоразрушающему инструменту, который в этом случае должен обеспечивать не только эффективное разрушение породы на забое, но и хорошую сохранность керна при его формировании и поступлении в керноприемную трубу или грунтоноску. |