6тема. Переменные это величины, которые в результате измерения могут принимать различные значения
Скачать 30.8 Kb.
|
Объектом исследования в прикладной статистике являются статистические данные, полученные в результате наблюдений или экспериментов. Статистические данные – это совокупность объектов (наблюдений, случаев) и признаков (переменных), их характеризующих. Например, объекты исследования – страны мира и признаки, – географические и экономические показатели их характеризующие: континент; высота местности над уровнем моря; среднегодовая температура; место страны в списке по качеству жизни, доли ВВП на душу населения; расходы общества на здравоохранение, образование, армию; средняя продолжительность жизни; доля безработицы, безграмотных; индекс качества жизни и т.д. Переменные – это величины, которые в результате измерения могут принимать различные значения. Независимые переменные – это переменные, значения которых в процессе экперимента можно изменять, а зависимые переменные – это переменные, значения которых можно только измерять. Переменные могут быть измерены в различных шкалах. Различие шкал определяется их информативностью. Рассматривают следующие типы шкал, представленные в порядке возрастания их информативности: номинальная, порядковая, интервальная, шкала отношений, абсолютная. Эти шкалы отличаются друг от друга также и количеством допустимых математических действий. Самая «бедная» шкала – номинальная, так как не определена ни одна арифметическая операция, самя «богатая» – абсолютная. Измерение в номинальной (классификационной) шкале означает определение принадлежности объекта (наблюдения) к тому или иному классу. Например: пол, род войск, профессия, континент и т.д. В этой шкале можно лишь посчитать количество объектов в классах – частоту и относительную частоту. Измерение в порядковой (ранговой) шкале, помимо определения класса принадлежности, позволяет упорядочить наблюдения, сравнив их между собой в каком-то отношении. Однако эта шкала не определяет дистанцию между классами, а только то, какое из двух наблюдений предпочтительнее. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа и выполнять над ними арифметические операции 5 . В этой шкале дополнительно к подсчету частоты объекта можно вычислить ранг объекта. Примеры переменных, измеренных в порядковой шкале: бальные оценки учащихся, призовые места на соревнованиях, воинские звания, место страны в списке по качеству жизни и т.д. Иногда номинальные и порядковые переменные называют категориальными, или группирующими, так как они позволяют произвести разделение объектов исследования на подгруппы. При измерении в интервальной шкале упорядочивание наблюдений можно выполнить настолько точно, что известны расстояния между любыми двумя их них. Шкала интервалов единственна с точностью до линейных преобразований (y = ax + b). Это означает, что шкала имеет произвольную точку отсчета – условный нуль. Примеры переменных, измеренных в интервальной шкале: температура, время, высота местности над уровнем моря. Над переменными в данной шкале можно выполнять операцию определения расстояния между наблюдениями. Расстояния являются полноправными числами и над ними можно выполнять любые арифметические операции. Шкала отношений похожа на интервальную шкалу, но она единственна с точностью до преобразования вида y = ax. Это означает, что шкала имеет фиксированную точку отсчета – абсолютный нуль, но произвольный масштаб измерения. Примеры переменных, измеренных в шкале отношений: длина, вес, сила тока, количество денег, расходы общества на здравоохранение, образование, армию, средняя продолжительность жизни и т.д. Измерения в этой шкале – полноправные числа и над ними можно выполнять любые арифметические действия. Абсолютная шкала имеет и абсолютный нуль, и абсолютную единицу измерения (масштаб). Примером абсолютной шкалы является числовая прямая. Эта шкала безразмерна, поэтому измерения в ней могут быть использованы в качестве показателя степени или основания логарифма. Примеры измерений в абсолютной шкале: доля безработицы; доля безграмотных, индекс качества жизни и т.д. Большинство статистических методов относятся к методам параметрической статистики, в основе которых лежит предположение, что случайный вектор переменных образует некоторое многомерное распределение, как правило, нормальное или преобразуется к нормальному распределению. Если это предположение не находит подтверждения, следует воспользоваться непараметрическими методами математической статистики. Корреляционный анализ. Между переменными (случайными величинами) может существовать функциональная связь, проявляющаяся в том, что одна из них определяется как функция от другой. Но между переменными может существовать и связь другого рода, проявляющаяся в том, что одна из них реагирует на изменение другой изменением своего закона распределения. Такую связь называют стохастической. Она появляется в том случае, когда имеются общие случайные факторы, влияющие на обе переменные. В качестве меры зависимости между переменными используется коэффициент корреляции (r), который изменяется в пределах от –1 до +1. Если коэффициент корреляции отрицательный, это означает, что с увеличением значений одной переменной значения другой убывают. Если переменные независимы, то коэффициент корреляции равен 0 (обратное утверждение верно только для переменных, имеющих нормальное распределение). Но если коэффициент корреляции не равен 0 (переменные называются некоррелированными), то это значит, что между переменными существует зависимость. Чем ближе значение r к 1, тем зависимость сильнее. Коэффициент корреляции достигает своих предельных значений +1 или -1, тогда и только тогда, когда зависимость между переменными линейная. Корреляционный анализ позволяет установить силу и направление стохастической взаимосвязи между переменными (случайными величинами). Если переменные измерены, как минимум, в интервальной шкале и имеют нормальное распределение, то корреляционный анализ осуществляется посредством вычисления коэффициента корреляции Пирсона, в противном случае используются корреляции Спирмена, тау Кендала, или Гамма. Регрессионный анализ. В регрессионном анализе моделируется взаимосвязь одной случайной переменной от одной или нескольких других случайных переменных. При этом, первая переменная называется зависимой, а остальные – независимыми. Выбор или назначение зависимой и независимых переменных является произвольным (условным) и осуществляется исследователем в зависимости от решаемой им задачи. Независимые переменные называются факторами, регрессорами или предикторами, а зависимая переменная – результативным признаком, или откликом. Если число предикторов равно 1, регрессию называют простой, или однофакторной, если число предикторов больше 1 – множественной или многофакторной. В общем случае регрессионную модель можно записать следующим образом: y = f(x1, x2, …, xn), где y – зависимая переменная (отклик), xi (i = 1,…, n) – предикторы (факторы), n – число предикторов. Посредством регрессионного анализа можно решать ряд важных для исследуемой проблемы задач: 1). Уменьшение размерности пространства анализируемых переменных (факторного пространства), за счет замены части факторов одной переменной – откликом. Более полно такая задача решается факторным анализом. 2). Количественное измерение эффекта каждого фактора, т.е. множественная регрессия, позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, «что является лучшим предиктором для...». При этом, становится более ясным воздействие отдельных факторов на отклик, и исследователь лучше понимает природу изучаемого явления. 3). Вычисление прогнозных значений отклика при определенных значениях факторов, т.е. регрессионный анализ, создает базу для вычислительного эксперимента с целью получения ответов на вопросы типа «Что будет, если… ». 4). В регрессионном анализе в более явной форме выступает причинно-следственный механизм. Прогноз при этом лучше поддается содержательной интерпретации. Канонический анализ. Канонический анализ предназначен для анализа зависимостей между двумя списками признаков (независимых переменных), характеризующих объекты. Например, можно изучить зависимость между различными неблагоприятными факторами и появлением определенной группы симптомов заболевания, или взаимосвязь между двумя группами клинико-лабораторных показателей (синдромов) больного. Канонический анализ является обобщением множественной корреляции как меры связи между одной переменной и множеством других переменных. Как известно, множественная корреляция есть максимальная корреляция между одной переменной и линейной функцией других переменных. Эта концепция была обобщена на случай связи между множествами переменных – признаков, характеризующих объекты. При этом достаточно ограничиться рассмотрением небольшого числа наиболее коррелированных линейных комбинаций из каждого множества. Пусть, например, первое множество переменных состоит из признаков у1, …, ур, второе множество состоит из – х1, …, хq, тогда взаимосвязь между данными множествами можно оценить как корреляцию между линейными комбинациями a1y1 + a2y2 + ... + apyp, b1x1 + b2x2 + ... + bqxq,, которая называется канонической корреляцией. Задача канонического анализа в нахождении весовых коэффициентов таким образом, чтобы каноническая корреляция была максимальной. Методы сравнения средних. В прикладных исследованиях часто встречаются случаи, когда средний результат некоторого признака одной серии экспериментов отличается от среднего результата другой серии. Так как средние это результаты измерений, то, как правило, они всегда различаются, вопрос в том, можно ли объяснить обнаруженное расхождение средних неизбежными случайными ошибками эксперимента или оно вызвано определенными причинами. Если идет речь о сравнении двух средних, то можно применять критерий Стьюдента (t-критерий). Это параметрический критерий, так как предполагается, что признак имеет нормальное распределение в каждой серии экспериментов. В настоящее время модным стало применение непараметрических критериев сравнения средних Сравнение средних результата один из способов выявления зависимостей между переменными признаками, характеризующими исследуемую совокупность объектов (наблюдений). Если при разбиении объектов исследования на подгруппы при помощи категориальной независимой переменной (предиктора) верна гипотеза о неравенстве средних некоторой зависимой переменной в подгруппах, то это означает, что существует стохастическая взаимосвязь между этой зависимой переменной и категориальным предиктором. Так, например, если установлено, что неверна гипотеза о равенстве средних показателей физического и интеллектуального развития детей в группах матерей, куривших и не куривших в период беременности, то это означает, что существует зависимость между курением матери ребенка в период беременности и его интеллектуальным и физическим развитием. Наиболее общий метод сравнения средних дисперсионный анализ. В терминологии дисперсионного анализа категориальный предиктор называется фактором. Дисперсионный анализ можно определить как параметрический, статистический метод, предназначенный для оценки влияния различных факторов на результат эксперимента, а также для последующего планирования экспериментов. Поэтому в дисперсионном анализе можно исследовать зависимость количественного признака от одного или нескольких качественных признаков факторов. Если рассматривается один фактор, то применяют однофакторный дисперсионный анализ, в противном случае используют многофакторный дисперсионный анализ. Частотный анализ. Таблицы частот, или как еще их называют одновходовые таблицы, представляют собой простейший метод анализа категориальных переменных. Таблицы частот могут быть с успехом использованы также для исследования количественных переменных, хотя при этом могут возникнуть трудности с интерпретацией результатов. Данный вид статистического исследования часто используют как одну из процедур разведочного анализа, чтобы посмотреть, каким образом различные группы наблюдений распределены в выборке, или как распределено значение признака на интервале от минимального до максимального значения. Как правило, таблицы частот графически иллюстрируются при помощи гистограмм. Кросстабуляция (сопряжение) – процесс объединения двух (или нескольких) таблиц частот так, что каждая ячейка в построенной таблице представляется единственной комбинацией значений или уровней табулированных переменных. Кросстабуляция позволяет совместить частоты появления наблюдений на разных уровнях рассматриваемых факторов. Исследуя эти частоты, можно выявить связи между табулированными переменными и исследовать структуру этой связи. Обычно табулируются категориальные или количественные переменные с относительно небольшим числом значений. Если надо табулировать непрерывную переменную (предположим, уровень сахара в крови), то вначале ее следует перекодировать, разбив диапазон изменения на небольшое число интервалов (например, уровень: низкий, средний, высокий). Анализ соответствий. Анализ соответствий по сравнению с частотным анализом содержит более мощные описательные и разведочные методы анализа двухвходовых и многовходовых таблиц. Метод, так же, как и таблицы сопряженности, позволяет исследовать структуру и взаимосвязь группирующих переменных, включенных в таблицу. В классическом анализе соответствий частоты в таблице сопряженности стандартизуются (нормируются) таким образом, чтобы сумма элементов во всех ячейках была равна 1. Одна из целей анализа соответствий – представление содержимого таблицы относительных частот в виде расстояний между отдельными строками и/или столбцами таблицы в пространстве более низкой размерности. Кластерный анализ. Кластерный анализ – это метод классификационного анализа; его основное назначение – разбиение множества исследуемых объектов и признаков на однородные в некотором смысле группы, или кластеры. Это многомерный статистический метод, поэтому предполагается, что исходные данные могут быть значительного объема, т.е. существенно большим может быть как количество объектов исследования (наблюдений), так и признаков, характеризующих эти объекты. Большое достоинство кластерного анализа в том, что он дает возможность производить разбиение объектов не по одному признаку, а по ряду признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов и позволяет исследовать множество исходных данных практически произвольной природы. Так как кластеры – это группы однородности, то задача кластерного анализа заключается в том, чтобы на основании признаков объектов разбить их множество на m (m – целое) кластеров так, чтобы каждый объект принадлежал только одной группе разбиения. При этом объекты, принадлежащие одному кластеру, должны быть однородными (сходными), а объекты, принадлежащие разным кластерам, – разнородными. Если объекты кластеризации представить как точки в n-мерном пространстве признаков (n – количество признаков, характеризующих объекты), то сходство между объектами определяется через понятие расстояния между точками, так как интуитивно понятно, что чем меньше расстояние между объектами, тем они более схожи. Дискриминантный анализ. Дискриминантный анализ включает статистические методы классификации многомерных наблюдений в ситуации, когда исследователь обладает так называемыми обучающими выборками. Этот вид анализа является многомерным, так как использует несколько признаков объекта, число которых может быть сколь угодно большим. Цель Цель дискриминантного анализ состоит в том, чтобы на основе измерения различных характеристик (признаков) объекта классифицировать его, т. е. отнести к одной из нескольких заданных групп (классов) некоторым оптимальным способом. При этом предполагается, что исходные данные наряду с признаками объектов содержат категориальную (группирующую) переменную, которая определяет принадлежность объекта к той или иной группе. Поэтому в дискриминантном анализе предусмотрена проверка непротиворечивости классификации, проведенной методом, с исходной эмпирической классификацией. Под оптимальным способом понимается либо минимум математического ожидания потерь, либо минимум вероятности ложной классификации. В общем случае задача различения (дискриминации) формулируется следующим образом. Пусть результатом наблюдения над объектом является построение k-мерного случайного вектора Х = (X1, X2, …, XК), где X1, X2, …, XК – признаки объекта. Требуется установить правило, согласно которому по значениям координат вектора Х объект относят к одной из возможных совокупностей i, i = 1, 2, …, n. Методы дискриминации можно условно разделить на параметрические и непараметрические. В параметрических известно, что распределение векторов признаков в каждой совокупности нормально, но нет информации о параметрах этих распределений. Непараметрические методы дискриминации не требуют знаний о точном функциональном виде распределений и позволяют решать задачи дискриминации на основе незначительной априорной информации о совокупностях, что особенно ценно для практических применений. Если выполняются условия применимости дискриминантного анализа – независимые переменные–признаки (их еще называют предикторами) должны быть измерены как минимум в интервальной шкале, их распределение должно соответствовать нормальному закону, необходимо воспользоваться классическим дискриминантным анализом, в противном случае – методом общие модели дискриминантного анализа. Факторный анализ. Факторный анализ – один из наиболее популярных многомерных статистических методов. Если кластерный и дискриминантный методы классифицируют наблюдения, разделяя их на группы однородности, то факторный анализ классифицирует признаки (переменные), описывающие наблюдения. Поэтому главная цель факторного анализа – сокращение числа переменных на основе классификация переменных и определения структуры взаимосвязей между ними. Сокращение достигается путем выделения скрытых (латентных) общих факторов, объясняющих связи между наблюдаемыми признаками объекта, т.е. вместо исходного набора переменных появится возможность анализировать данные по выделенным факторам, число которых значительно меньше исходного числа взаимосвязанных переменных. Деревья классификации. Деревья классификации – это метод классификационного анализа, позволяющий предсказывать принадлежность объектов к тому или иному классу в зависимости от соответствующих значений признаков, характеризующих объекты. Признаки называются независимыми переменными, а переменная, указывающая на принадлежность объектов к классам, называется зависимой. В отличие от классического дискриминантного анализа, деревья классификации способны выполнять одномерное ветвление по переменными различных типов категориальным, порядковым, интервальным. Не накладываются какие-либо ограничения на закон распределения количественных переменных. По аналогии с дискриминантным анализом метод дает возможность анализировать вклады отдельных переменных в процедуру классификации. Деревья классификации могут быть, а иногда и бывают, очень сложными. Однако использование специальных графических процедур позволяет упростить интерпретацию результатов даже для очень сложных деревьев. Возможность графического представления результатов и простота интерпретации во многом объясняют большую популярность деревьев классификации в прикладных областях, однако, наиболее важные отличительные свойства деревьев классификации – их иерархичность и широкая применимость. Структура метода такова, что пользователь имеет возможность по управляемым параметрам строить деревья произвольной сложности, добиваясь минимальных ошибок классификации. Но по сложному дереву, из-за большой совокупности решающих правил, затруднительно классифицировать новый объект. Поэтому при построении дерева классификации пользователь должен найти разумный компромисс между сложностью дерева и трудоемкостью процедуры классификации. Широкая сфера применимости деревьев классификации делает их весьма привлекательным инструментом анализа данных, но не следует полагать, что его рекомендуется использовать вместо традиционных методов классификационного анализа. Напротив, если выполнены более строгие теоретические предположения, налагаемые традиционными методами, и выборочное распределение обладает некоторыми специальными свойствами (например, соответствие распределения переменных нормальному закону), то более результативным будет использование именно традиционных методов. Однако как метод разведочного анализа или как последнее средство, когда отказывают все традиционные методы, Деревья классификации, по мнению многих исследователей, не знают себе равных. Анализ главных компонент и классификация. На практике часто возникает задача анализа данных большой размерности. Метод анализ главных компонент и классификация позволяет решить эту задачу и служит для достижения двух целей: – уменьшение общего числа переменных (редукция данных) для того, чтобы получить «главные» и «некоррелирующие» переменные; – классификация переменных и наблюдений, при помощи строящегося факторного пространства. Метод имеет сходство с факторным анализом в постановочной части решаемых задач, но имеет ряд существенных отличий: – при анализе главных компонент не используются итеративные методы для извлечения факторов; – наряду с активными переменными и наблюдениями, используемыми для извлечения главных компонент, можно задать вспомогательные переменные и/или наблюдения; затем вспомогательные переменные и наблюдения проектируются на факторное пространство, вычисленное на основе активных переменных и наблюдений; – перечисленные возможности позволяют использовать метод как мощное средство для классификации одновременно переменных и наблюдений. Решение основной задачи метода достигается созданием векторного пространства латентных (скрытых) переменных (факторов) с размерностью меньше исходной. Исходная размерность определяется числом переменных для анализа в исходных данных. Многомерное шкалирование. Метод можно рассматривать как альтернативу факторному анализу, в котором достигается сокращение числа переменных, путем выделения латентных (непосредственно не наблюдаемых) факторов, объясняющих связи между наблюдаемыми переменными. Цель многомерного шкалирования – поиск и интерпретация латентных переменных, дающих возможность пользователю объяснить сходства между объектами, заданными точками в исходном пространстве признаков. Показателями сходства объектов на практике могут быть расстояния или степени связи между ними. В факторном анализе сходства между переменными выражаются с помощью матрицы коэффициентов корреляций. В многомерном шкалировании в качестве исходных данных можно использовать произвольный тип матрицы сходства объектов: расстояния, корреляции и т.д. Несмотря на то, что имеется много сходства в характере исследуемых вопросов, методы многомерное шкалирование и факторный анализ имеют ряд существенных отличий. Так, факторный анализ требует, чтобы исследуемые данные подчинялись многомерному нормальному распределению, а зависимости были линейными. Многомерное шкалирование не накладывает таких ограничений, оно может быть применимо, если задана матрица попарных сходств объектов. В терминах различий получаемых результатов факторный анализ стремится извлечь больше факторов – латентных переменных по сравнению с многомерным шкалированием. Поэтому многомерное шкалирование часто приводит к проще интерпретируемым решениям. Однако более существенно то, что метод многомерное шкалирование можно применять к любым типам расстояний или сходств, в то время как факторный анализ требует, чтобы в качестве исходных данных была использована корреляционная матрица переменных или по файлу исходных данных сначала была вычислена матрица корреляций. Основное предположение многомерного шкалирования заключается в том, что существует некоторое метрическое пространство существенных базовых характеристик, которые неявно и послужили основой для полученных эмпирических данных о близости между парами объектов. Следовательно, объекты можно представить как точки в этом пространстве. Предполагают также, что более близким (по исходной матрице) объектам соответствуют меньшие расстояния в пространстве базовых характеристик. Поэтому, многомерное шкалирование – это совокупность методов анализа эмпирических данных о близости объектов, с помощью которых определяется размерность пространства существенных для данной содержательной задачи характеристик измеряемых объектов и конструируется конфигурация точек (объектов) в этом пространстве. Это пространство («многомерная шкала») аналогично обычно используемым шкалам в том смысле, что значениям существенных характеристик измеряемых объектов соответствуют определенные позиции на осях пространства. Логику многомерного шкалирования можно проиллюстрировать на следующем простом примере. Предположим, что имеется матрица попарных расстояний (т.е. сходства некоторых признаков) между некоторыми городами. Анализируя матрицу, надо расположить точки с координатами городов в двумерном пространстве (на плоскости), максимально сохранив реальные расстояния между ними. Полученное размещение точек на плоскости впоследствии можно использовать в качестве приближенной географической карты. В общем случае многомерное шкалирование позволяет таким образом расположить объекты (города в нашем примере) в пространстве некоторой небольшой размерности (в данном случае она равна двум), чтобы достаточно адекватно воспроизвести наблюдаемые расстояния между ними. В результате можно измерить эти расстояния в терминах найденных латентных переменных. Так, в нашем примере можно объяснить расстояния в терминах пары географических координат Север/Юг и Восток/Запад. Моделирование структурными уравнениями (причинное моделирование). Наметившийся в последнее время прогресс в области многомерного статистического анализа и анализа корреляционных структур, объединенный с новейшими вычислительными алгоритмами, послужил отправной точкой для создания новой, но уже получившей признание техники моделирования структурными уравнениями (SEPATH). Эта необычайно мощная техника многомерного анализа включает методы из различных областей статистики, множественная регрессия и факторный анализ получили здесь естественное развитие и объединение. Объектом моделирования структурными уравнениями являются сложные системы, внутренняя структура которых не известна («черный ящик»). Наблюдая параметры системы при помощи SEPATH, можно исследовать ее структуру, установить причинно-следственные взаимосвязи между элементами системы. Постановка задачи структурного моделирования выглядит следующим образом. Пусть имеются переменные, для которых известны статистические моменты, например, матрица выборочных коэффициентов корреляции или ковариации. Такие переменные называются явными. Они могут быть характеристиками сложной системы. Реальные связи между наблюдаемыми явными переменными могут быть достаточно сложными, однако предполагаем, что имеется некоторое число скрытых переменных, которые с известной степенью точности объясняют структуру этих связей. Таким образом, с помощью латентных переменных строится модель связей между явными и неявными переменными. В некоторых задачах латентные переменные можно рассматривать как причины, а явные – как следствия, поэтому, такие модели называются причинными. Допускается, что скрытые переменные, в свою очередь, могут быть связаны между собой. Структура связей допускается достаточно сложной, однако тип ее постулируется – это связи, описываемые линейными уравнениями. Какие-то параметры линейных моделей известны, какие-то нет, и являются свободными параметрами. Основная идея моделирования структурными уравнениями состоит в том, что можно проверить, связаны ли переменные Y и X линейной зависимостью Y = aX, анализируя их дисперсии и ковариации. Эта идея основана на простом свойстве среднего и дисперсии: если умножить каждое число на некоторую константу k, среднее значение также умножится на k, при этом стандартное отклонение умножится на модуль k. Например, рассмотрим набор из трех чисел 1, 2, 3. Эти числа имеют среднее, равное 2, и стандартное отклонение, равное 1. Если умножить все три числа на 4, то легко посчитать, что среднее значение будет равно 8, стандартное отклонение – 4, а дисперсия – 16. Таким образом, если есть наборы чисел X и Y, связанные зависимостью Y = 4X, то дисперсия Y должна быть в 16 раз больше, чем дисперсия X. Поэтому можно проверить гипотезу о том, что Y и X связаны уравнением Y = 4X, сравнением дисперсий переменных Y и X. Эта идея может быть различными способами обобщена на несколько переменных, связанных системой линейных уравнений. При этом правила преобразований становятся более громоздкими, вычисления более сложными, но основной смысл остается прежним – можно проверить, связаны ли переменные линейной зависимостью, изучая их дисперсии и ковариации. Методы анализа выживаемости. Методы анализа выживаемости первоначально были развиты в медицинских, биологических исследованиях и страховании, но затем стали широко применяться в социальных и экономических науках, а также в промышленности в инженерных задачах (анализ надежности и времен отказов). Представьте, что изучается эффективность нового метода лечения или лекарственного препарата. Очевидно, наиболее важной и объективной характеристикой является средняя продолжительность жизни пациентов с момента поступления в клинику или средняя продолжительность ремиссии заболевания. Для описания средних времен жизни или ремиссии можно было бы использовать стандартные параметрические и непараметрические методы. Однако в анализируемых данных есть существенная особенность – могут найтись пациенты, которые в течение всего периода наблюдения выжили, а у некоторых из них заболевание все еще находится в стадии ремиссии. Также может образоваться группа больных, контакт с которыми был потерян до завершения эксперимента (например, их перевели в другие клиники). При использовании стандартных методов оценки среднего эту группу пациентов пришлось бы исключить, тем самым, потеряв с трудом собранную важную информацию. К тому же большинство этих пациентов являются выжившими (выздоровевшими) в течение того времени, которое их наблюдали, что свидетельствует в пользу нового метода лечения (лекарственного препарата). Такого рода информация, когда нет данных о наступлении интересующего нас события, называется неполной. Если есть данные о наступлении интересующего нас события, то информация называется полной. Наблюдения, которые содержат неполную информацию, называются цензурированными наблюдениями. Цензурированные наблюдения типичны, когда наблюдаемая величина представляет время до наступления некоторого критического события, а продолжительность наблюдения ограничена по времени. Использование цензурированных наблюдений составляет специфику рассматриваемого метода – анализа выживаемости. В данном методе исследуются вероятностные характеристики интервалов времени между последовательным возникновением критических событий. Такого рода исследования называются анализом длительностей до момента прекращения, которые можно определить как интервалы времени между началом наблюдения за объектом и моментом прекращения, при котором объект перестает отвечать заданным для наблюдения свойствам. Цель исследований – определение условных вероятностей, связанных с длительностями до момента прекращения. Построение таблиц времен жизни, подгонка распределения выживаемости, оценивание функции выживания с помощью процедуры Каплана – Мейера относятся к описательным методам исследования цензурированных данных. Некоторые из предложенных методов позволяют сравнивать выживаемость в двух и более группах. Наконец, анализ выживаемости содержит регрессионные модели для оценивания зависимостей между многомерными непрерывными переменными со значениями, аналогичными временам жизни. Общие модели дискриминантного анализа. Если не выполняются условия применимости дискриминантного анализа (ДА) – независимые переменные (предикторы) должны быть измерены как минимум в интервальной шкале, их распределение должно соответствовать нормальному закону, необходимо воспользоваться методом общие модели дискриминантного анализа (ОДА). Метод имеет такое название, потому что в нем для анализа дискриминантных функций используется общая линейная модель (GLM). В этом модуле анализ дискриминантных функций рассматривается как общая многомерная линейная модель, в которой категориальная зависимая переменная (отклик) представляется векторами с кодами, обозначающими различные группы для каждого наблюдения. Метод ОДА имеет ряд существенных преимуществ перед классическим дискриминантным анализом. Например, не устанавливается никаких ограничений на тип используемого предиктора (категориальный или непрерывный) или на тип определяемой модели, возможен пошаговый выбор предикторов и выбор наилучшего подмножества предикторов, в случае наличия в файле данных кросс-проверочной выборки выбор наилучшего подмножества предикторов можно провести на основе долей ошибочной классификации для кросс-проверочной выборки и т.д. Временные ряды. Временные ряды – это наиболее интенсивно развивающееся, перспективное направление математической статистики. Под временным (динамическим) рядом подразумевается последовательность наблюдений некоторого признака Х (случайной величины) в последовательные равноотстоящие моменты t. Отдельные наблюдения называются уровнями ряда и обозначаются хt, t = 1, …, n. При исследовании временного ряда выделяются несколько составляющих: xt=ut+yt+ct+et, t = 1, …, n, где ut – тренд, плавно меняющаяся компонента, описывающая чистое влияние долговременных факторов (убыль населения, уменьшение доходов и т.д.); – сезонная компонента, отражающая повторяемость процессов в течение не очень длительного периода (дня, недели, месяца и т.д.); сt – циклическая компонента, отражающая повторяемость процессов в течение длительных периодов времени свыше одного года; t – случайная компонента, отражающая влияние не поддающихся учету и регистрации случайных факторов. Первые три компоненты представляют собой детерминированные составляющие. Случайная составляющая образована в результате суперпозиции большого числа внешних факторов, оказывающих каждый в отдельности незначительное влияние на изменение значений признака Х. Анализ и исследование временного ряда позволяют строить модели для прогнозирования значений признака Х на будущее время, если известна последовательность наблюдений в прошлом. Нейронные сети. Нейронные сети представляют собой вычислительную систему, архитектура которой имеет аналогию с построением нервной ткани из нейронов. На нейроны самого нижнего слоя подаются значения входных параметров, на основании которых нужно принимать определенные решения. Например, в соответствии со значениями клинико-лабораторных показателей больного надо отнести его к той или иной группе по степени тяжести заболевания. Эти значения воспринимаются сетью как сигналы, передающиеся в следующий слой, ослабляясь или усиливаясь в зависимости от числовых значений (весов), приписываемых межнейронным связям. В результате на выходе нейрона верхнего слоя вырабатывается некоторое значение, которое рассматривается как ответ – отклик всей сети на входные параметры. Для того, чтобы сеть работала ее надо «натренировать» (обучить) на данных для которых известны значения входных параметров и правильные отклики на них. Обучение состоит в подборе весов межнейронных связей, обеспечивающих наибольшую близость ответов к известным правильным ответам. Нейронные сети могут быть использованы для классификации наблюдений. Планирование экспериментов. Искусство располагать наблюдения в определенном порядке или проводить специально спланированные проверки с целью полного использования возможностей этих методов и составляет содержание предмета «планирование эксперимента». В настоящее время экспериментальные методы широко используются как в науке, так и в различных областях практической деятельности. Обычно основная цель научного исследования состоит в том, чтобы показать статистическую значимость эффекта воздействия определенного фактора на изучаемую зависимую переменную. Как правило, основная цель планирования экспериментов заключается в извлечении максимального количества объективной информации о влиянии изучаемых факторов на интересующий исследователя показатель (зависимую переменную) с помощью наименьшего числа дорогостоящих наблюдений. К сожалению, на практике, в большинстве случаев, недостаточное внимание уделяется планированию исследований. Собирают данные (столько, сколько могут собрать), а потом уже проводят статистическую обработку и анализ. Но сам по себе правильно проведенный статистический анализ недостаточен для достижения научной достоверности, поскольку качество любой информации, получаемой в результате анализа данных, зависит от качества самих данных. Поэтому планирование экспериментов находит все большее применение в прикладных исследованиях. Целью методов планирования экспериментов является изучение влияния определенных факторов на исследуемый процесс и поиск оптимальных уровней факторов, определяющих требуемый уровень течения данного процесса. Карты контроля качества. В условиях современного мира чрезвычайно актуальным является проблема качества не только выпускаемой продукции, но и услуг оказываемых населению. От успешного решения этой важной проблемы в значительной степени зависит благополучие любой фирмы, организации или учреждения. Качество продукции и услуг формируется в процессе научных исследований, конструкторских и технологических разработок, обеспечивается хорошей организацией производства и услуг. Но изготовление продукции и оказание услуг независимо от их вида всегда связано с определенным непостоянством условий производства и предоставления. Это приводит к некоторой вариабельности признаков их качества. Поэтому, актуальными являются вопросы разработки методов контроля качества, которые позволят своевременно выявить признаки нарушения технологического процесса или оказания услуг. При этом, для достижения и поддержания высокого уровня качества, удовлетворяющего потребителя нужны методы, направленные не на устранение дефектов готовой продукции и несоответствий услуг, а на предупреждение и прогнозирование причин их появления. Контрольная карта – это инструмент, позволяющий отслеживать ход протекания процесса и воздействовать на него (с помощью соответствующей обратной связи), предупреждая его отклонения от предъявленных к процессу требований. Инструментарий карт контроля качества широко использует статистические методы, основанные на теории вероятностей и математической статистики. Применение статистических методов позволяет при ограниченных объемах анализируемых изделий с заданной степенью точности и достоверности судить о состоянии качества выпускаемой продукции. Обеспечивает прогнозирование, оптимальное регулирование проблем в области качества, принятие верных управленческих решений не на основе интуиции, а при помощи научного изучения и выявления закономерностей в накапливаемых массивах числовой информации. Статистическое исследование может проводиться посредством следующих методик: Статистическое наблюдение; Сводка и группировка материалов статистического наблюдения; Абсолютные и относительные статистические величины; Вариационные ряды; Выборка; Корреляционный и регрессионный анализ; Ряды динамики. Первичный анализ данных Категории Математическая статистика | Под редакцией сообщества: Математика Первичный анализ данных (описательная статистика) – раздел математической статистики, изучающий способы обработки массивов статистических данных с целью нахождения обобщающих характеристик элементов массива, построения компактного и наглядного описания массивов данных, выявления проявляющихся в массивах закономерностей и/или резко выделяющихся (из основной массы) наблюдений. Закономерности, обнаруженные при первичном анализе данных, необходимо проверять на новых массивах статистических данных, чтобы обеспечить их объективность. Основными приемами описания являются построение гистограмм, диаграмм рассеяния и другие графические средства представления данных. На более поздних этапах обработки данных иногда приходится также прибегать к анализу выделяющихся наблюдений с целью их исключения. Вторичный анализ данных Анализ данных, не предусмотренный в протоколе (плане, структуре) исследования, или анализ уже существующих данных (когда план исследования формируется после сбора данных). Результаты вторичного анализа данных часто являются основанием для выдвижения научных гипотез. Интерпретация результатов вторичного анализа данных должна быть весьма осторожной, поскольку часто они являются порождением систематического различия между сопоставляемыми группами. |