Главная страница
Навигация по странице:

  • Трансгенные мыши: методология

  • Использование ретровирусных векторов

  • Метод микроинъекций ДНК

  • Использование модифицированных эмбриональных стволовых клеток

  • Клонирование с помощью переноса ядра

  • Перенос генов с помощью искусственных дрожжевых хромосом

  • Трансгенные животные. Почти все гены зигот имеют хорошие шансы быть представленными в большинстве соматических клеток организма и принять участие в формировании их генотипа и фенотипа


    Скачать 2.03 Mb.
    НазваниеПочти все гены зигот имеют хорошие шансы быть представленными в большинстве соматических клеток организма и принять участие в формировании их генотипа и фенотипа
    АнкорТрансгенные животные.doc
    Дата05.10.2017
    Размер2.03 Mb.
    Формат файлаdoc
    Имя файлаТрансгенные животные.doc
    ТипДокументы
    #9218
    КатегорияБиология. Ветеринария. Сельское хозяйство
    страница1 из 2
      1   2

    ВВЕДЕНИЕ
    Многоклеточный организм высших животных и растений является продуктом онтогенетического развития, при котором из одной клетки (зиготы), образовавшейся в результате слияния двух половых клеток родителей (гамет), путем большого числа дроблений образуется вся совокупность высокодифференцированных клеток органов и тканей организма. Поскольку любая соматическая клетка или клетка зародышевого пути, в конечном счете, берет свое начало от двух объединившихся родительских клеток, она, как правило, заключает в себе всю (или большую часть) генетическую информацию родительских организмов. Несмотря на то что эта схема является упрощенной и по мере развития дифференцированного состояния соматических клеток их генетический материал часто претерпевает необратимые перестройки (например эритроциты человека вообще лишены ядер), такая картина подчеркивает преемственность генетического материала в рядах клеточных поколений соматических клеток организмов.
    Почти все гены зигот имеют хорошие шансы быть представленными в большинстве соматических клеток организма и принять участие в формировании их генотипа и фенотипа. Предпосылки такого рода привели к мысли о возможности изменения фенотипа многоклеточных организмов путем введения новых рекомбинантных генов в геном зигот, еще не претерпевших дробления в раннем эмбриональном развитии. В случае объединения с геномом зиготы новые гены должны распространиться в ряду клеточных поколений соматических клеток и экспрессироваться в большинстве этих клеток. Поскольку, с известными ограничениями, весь многоклеточный организм можно рассматривать как клон соматических клеток, произошедших от единственной клетки, распространение рекомбинантных генов, введенных в зиготу, в соматических клетках организма допустимо рассматривать как разновидность молекулярного клонирования последовательностей ДНК.
    Такой молекулярно-генетический подход к изменению генотипа и фенотипа многоклеточных организмов был реализован экспериментально в середине 1970-х годов. Заражение мышиных эмбрионов на предимплантационной стадии развития вирусом лейкоза мышей (MuLV) приводило к образованию взрослых особей, содержащих вирусную ДНК, интегрированную в геном как соматических клеток, так и клеток зародышевого пути, и эта ДНК передавалась из поколения в поколение. Гены, искусственно введенные в геном многоклеточных организмов и передающиеся от родителей потомству, получили название трансгенов, процесс такого введения и передачи генов обозначили трансгенозом, а животные или растения, содержащие трансгены в геноме своих клеток, стали называть трансгенными. Развитие техники создания трансгенных животных и растений привело к возникновению нового быстро развивающегося направления молекулярной генетики. Были получены уникальные знания об особенностях экспрессии генов и биосинтезе белков в онтогенезе многоклеточных организмов, а также о возможности изменения фенотипа трансгенных организмов, в том числе и коррекции мутантного фенотипа, и использования трансгенных организмов для решения задач биотехнологии, связанных с биосинтезом рекомбинантных белков.

    Для выведения улучшенных пород домашних животных и птиц (коров с более высокой удой­ностью, овец с качественной шерстью, кур с более высокой яйценоскостью и т. д.) в основном проводят множество раундов скрещиваний и отбора, ка­ждый раз используя в качестве производителей животных с наилучшими характеристиками. В результате со временем можно получать более или менее чистые линии высокопродуктивных пород животных. Стратегия скрещивания и от­бора, требующая больших временных и матери­альных затрат, оказалась тем не менее исклю­чительно успешной, и сегодня почти все аспекты биологических основ выведения но­вых пород домашнего скота могут быть к ней сведены. Однако после того как эффективная генетическая линия получена, вводить новые признаки методом скрещивания и отбора ста­новится все труднее. Так, линия с новым «цен­ным» геном может нести также и «вредные» ге­ны, вследствие чего потомки могут оказаться менее продуктивными. Чтобы быть уверенны­ми в том, что новая, улучшенная линия сохра­нит исходные полезные признаки и приобретет новые, необходимо разработать абсолютно но­вую стратегию.

    Успешные эксперименты по введению чуже­родных генов в клетки млекопитающих и воз­можность создания генетически идентичных животных путем переноса ядра из эмбриональ­ной клетки в яйцеклетку с удаленным ядром (перенос ядра, клонирование) позволили вклю­чать в хромосомную ДНК высших животных от­дельные функциональные гены или целые их кластеры. Используемая стратегия состоит в следующем.

    • Клонированный ген вводят в ядро оплодо­творенной яйцеклетки.

    • Инокулированные оплодотворенные яйце­клетки имплантируют в реципиентную жен­скую особь (поскольку успешное завершение развития эмбриона млекопитающих в иных условиях невозможно).

    • Отбирают потомков, развившихся из имплантированных яйцеклеток, которые содержат клонированный ген во всех клетках.

    • Скрещивают животных, которые несут клонированный ген в клетках зародышевой линии, и получают новую генетическую линию.

    Такой подход имеет много практических при­ложений. Например, если продукт вводимого ге­на стимулирует рост, то трансфицированные жи­вотные будут расти быстрее при меньшем количестве пищи. Повышение эффективности усвоения пищи всего на несколько процентов может существенно снизить стоимость конечно­го продукта (говядины, свинины и т. д.).

    Идея генетического изменения животных путем введения генов в оплодотворенные яйцеклетки бы­ла реализована на практике в 1980-х гг. Эксперименты по генетической модифика­ции многоклеточных организмов путем введе­ния в них трансгенов требуют много времени. Тем не менее трансгеноз стал мощным инструментом для исследования молекулярных основ экспрессии генов млекопитающих и их развития, для создания модельных систем, позволяющих изучать болезни человека, а также для генетиче­ской модификации клеток молочных желез жи­вотных с целью получения с молоком важных для медицины белков. Был даже предложен новый термин «фарминг», относящийся к процессу по­лучения из молока трансгенных домашних животных аутентичных белков челове­ка или фармацевтических препаратов. Использо­вание молока целесообразно потому, что оно об­разуется в организме животного в большом количестве и его можно надаивать по мере на­добности без вреда для животного. Вырабатывае­мый молочной железой и секретируемый в моло­ко новый белок не должен при этом оказывать никаких побочных эффектов на нормальные фи­зиологические процессы, протекающие в орга­низме трансгенного животного, и подвергаться посттрансляционным изменениям, которые по крайней мере близки к таковым в клетках челове­ка. Кроме того, его выделение из молока, которое содержит и другие белки, не должно составлять большого труда.

    Трансгенные мыши: методология

    Трансгенные технологии разрабатывались и со­вершенствовались на лабораторных мышах. С начала 1980-х гг. в различные линии мышей были введены сотни генов. Эти исследования в зна­чительной мере способствовали установлению механизмов генной регуляции и развития опухо­лей, природы иммунологической специфично­сти, молекулярной генетики роста и развития, других фундаментальных биологических процес­сов. Трансгенные мыши сыграли свою роль в ис­следовании возможности крупномасштабного синтеза лекарственных веществ, а также в созда­нии трансгенных линий, позволяющих модели­ровать различные генетические болезни челове­ка. Введение чужеродной ДНК мышам можно осуществить разными методами: 1) с помощью ретровирусных векторов, инфицирующих клетки эмбриона на ранних стадиях развития перед им­плантацией эмбриона в самку-реципиента; 2) микроинъекцией в увеличенное ядро спермия (мужской пронуклеус) оплодотворенной яйце­клетки; 3) введением генетически модифициро­ванных эмбриональных стволовых клеток в предимплантированный эмбрион на ранних стадиях развития.
    Использование ретровирусных векторов
    Более простым способом доставки чужеродных генов в геном животного-реципиента является использование векторов на основе вирусов (рис. 1). В этом случае эмбрионы на ранней (восьмиклеточной) стадии развития инкубируют в культуральной среде в присутствии фибробластов, в которых образуются рекомбинантные ретровирусы, и после заражения такими вирусами эмбрионы пересаживают псевдобеременным самкам мышей, где они продолжают свое развитие. Кроме простоты одним из преимуществ данного способа введения ДНК является то, что в геном клеток зародышей интегрируется, как правило, одна копия исследуемого гена, фланкированного длинными концевыми повторами вирусной хромосомы, что может способствовать эффективной экспрессии гена. Однако к недостаткам метода следует отнести необходимость проведения дополнительных генно-инженерных манипуляций при подготовке ретровирусного вектора, ограниченную емкость вектора (размер вставки – до 10 т.п.о.), вследствие чего трансген может оказаться лишенным прилегаю­щих регуляторных последовательностей, необ­ходимых для его экспрессии, и мозаицизм образующихся трансгенных животных, которые состоят из клеток как содержащих, так и не содержащих трансгены.

    Использование ретровирусных векторов имеет и еще один большой недостаток. Хотя эти векторы создаются так, чтобы они были дефект­ными по репликации, геном штамма ретровируса (вируса-помощника), который необходим для получения большого количества векторной ДНК, может попасть в то же ядро, что и трансген. Несмотря на все принимаемые меры, ретровирусы-помощники могут реплицироваться в организме трансгенного животного, что совер­шенно недопустимо, если этих животных пред­полагается использовать в пищу или как инстру­мент для получения коммерческого продукта. И поскольку существуют альтернативные методы трансгеноза, ретровирусные векторы редко ис­пользуются для создания трансгенных живот­ных, имеющих коммерческую ценность.



    Рис. 1. Получение трансгенных мышей с использованием ретровирусных векторов.

    Метод микроинъекций ДНК

    В настоящее время для создания трансгенных мы­шей чаще всего используют метод микроинъекций ДНК. Он заключается в следуюшем (рис. 2).

    1. Увеличение числа яйцеклеток, в которых бу­дет инъецирована чужеродная ДНК, путем стимуляции гиперовуляции у самок-доно­ров. Сначала самкам вводят сыворотку бере­менной кобылы, а спустя примерно 48 ч — хорионический гонадотропин человека. В результате гиперовуляции образуется при­мерно 35 яйцеклеток вместо обычных 5—10.

    2. Скрещивание с самцами самок с гиперовуля­цией и их умерщвление. Вымывание из яйце­водов оплодотворенных яйцеклеток.

    3. Микроинъекция ДНК в оплодотворенные яй­цеклетки — как правило, сразу после выделения. Часто вводимая трансгенная конструкция нахо­дится в линейной форме и не содержит прокариотических векторных последовательностей.

    У млекопитающих после проникновения сперматозоида в яйцеклетку ядро спермия (муж­ской пронуклеус) и ядро яйцеклетки существуют раздельно. После того как последнее заканчивает митотическое деление и становится женским пронуклеусом, может произойти слияние ядер (кариогамия). Мужской пронуклеус обычно го­раздо больше женского, его легко локализовать с помощью секционного микроскопа и ввести в него чужеродную ДНК. При этом яйцеклетку на время проведения микроинъекции можно пере­мещать, ориентировать нужным образом и фик­сировать. Опытный экспериментатор за день мо­жет инокулиронать несколько сотен яйцеклеток.

    После введения ДНК от 25 до 40 яйцеклеток имплантируют микрохирургическим путем в «суррогатную» мать, у которой вызывают ложную беременность скрещиванием с вазэктомированным самцом. У мышей спаривание – это единственный известный способ подготовки матки к имплантации. Поскольку вазэктомированный самец сперматозоидов не продуцирует, ни одна из яйцеклеток «суррогатной» матери не оплодотворяется. Эмбрионы развиваются только из введенных яйцеклеток, и мышата рождаются спустя примерно 3 нед после имплантации.

    Для идентификации трансгенных животных выделяют ДНК из маленького кусочка хвоста и тестируют ее на наличие трансгена с помощью блот-гибридизации по Саузерну методом поли-меразной цепной реакции (ПЦР). Чтобы опре­делить, находится ли трансген в клетках зароды­шевой линии животного, трансгенную мышь скрещивают с другой мышью. Далее можно про­водить скрещивание потомков для получения чистых (гомозиготных) трансгенных линий.

    Описанный подход кажется на первый взгляд относительно простым, однако он требует четкой координации разных этапов. Даже высококвали­фицированному специалисту удается получить жизнеспособных трансгенных животных в луч­шем случае лишь из 5% инокулированных яйце­клеток (рис. 3). Ни один из этапов экспери­мента не эффективен на все 100%, поэтому для микроинъекций необходимо использовать большое число оплодотворенных яйцеклеток. На­пример, при получении трансгенных мышей после инъекции ДНК выживают только 66% оп­лодотворенных яйцеклеток; мышата развива­ются примерно из 25% имплантированных яй­цеклеток, причем трансгенными из них оказываются лишь 25%. Таким образом, из 1000 имплантированных оплодотворенных яйцекле­ток развивается от 30 до 50 трансгенных мышат. Кроме того, введенная ДНК может интегриро­вать в любое место в геноме, и зачастую множе­ство ее копий включаются в один сайт. И нако­нец, не все трансгенные мышата будут обладать нужными свойствами. В организме некоторых особей трансген может не экспрессироваться из-за неподходящего окружения сайта интегра­ции, а в организме других число копий чуже­родного гена может оказаться слишком боль­шим, что может привести к гиперпродукции белка и нарушению нормальных физиологиче­ских процессов. И все же, несмотря на все это, метод микроинъекций используют для получе­ния линий мышей, несущих функциональные трансгены, довольно часто.



    Рис. 2. Получение линий трансгенных мышей методом микроинъекций.


    Рис. 3. Суммарная эффективность трансгеноза после микроинъекций. Все оплодотворенные яйцеклетки (100 %) коровы, свиньи, овцы и мыши инокулировали трансгеном, однако успешная имплантация и появление потомства были редкими событиями: трансгенное потомство давали менее 5% обработанных яйцеклеток.

    Использование модифицированных эмбриональных стволовых клеток

    Клетки, выделенные из мышиных эмбрионов на стадии бластоцисты, могут пролиферировать в культуре, сохраняя способность к дифференцировке в любые типы клеток, в том числе и в клетки зародышевой линии, при введении в другой эмбрион на стадии бластоцисты. Такие клетки называются плюрипотентными эмбрио­нальными стволовыми клетками (ЕS). ЕS-клетки в культуре легко модифицировать методами генной инженерии без нарушения их плюрипотентности. Например, в определенный сайт не­существенного гена в их геноме можно встроить функциональный трансген. Затем можно ото­брать измененные клетки, культивировать их и использовать для получения трансгенных жи­вотных (рис. 4). Это позволяет избежать слу­чайного встраивания, характерного для метода микроинъекций и ретровирусных векторных си­стем.
    Рекомбинантные гены вводят в такие клетки любым из вышеупомянутых способов, а кроме того, электропорацией или другими стандартными методами, применяемыми для доставки генов в культивируемые соматические клетки. При этом вместе с исследуемыми генами возможно введение селектируемых маркеров, которые позволяют проводить отбор клеток, экспрессирующих данные маркеры и, следовательно, гарантированно содержащих сцепленные с ними исследуемые гены. Отобранные таким образом клетки переносят в бластоцисты развивающихся эмбрионов или используют для получения агрегационных химер объединением их с клетками восьмиклеточных эмбрионов с последующей пересадкой эмбрионов псевдобеременным самкам.

    При трансфекиии ЕS-клеток в культуре век­тором, предназначенным для интеграции в спе­цифический хромосомный сайт, в некоторых клетках ДНК встраивается случайным образом, в других встраивание происходит в нужный сайт, в большинстве же ЕS-клеток интеграции вообще не происходит. Для увеличения числа клеток первого типа используют так называе­мую позитивно-негативную селекцию. Эта стратегия состоит в позитивной селекции кле­ток, несущих векторную ДНК, встроившуюся в нужный сайт, и негативной селекции клеток с векторной ДНК, интегрировавшей в случайный сайт.

    Сайт-мишень должен находиться в такой об­ласти геномной ДНК, которая не кодирует важ­ных белков, чтобы интеграция чужеродной ДНК не повлияла на процессы развития или клеточ­ные функции. Кроме того, существенно, чтобы встраивание трансгена не блокировало трансля­цию соответствующего участка генома. Поиск подобных сайтов ведется непрерывно.

    Вектор для позитивно-негативной селекции обычно содержит следующие элементы: I) два блока последовательностей (НВ1 и НВ2), гомо­логичных отдельным участкам сайта-мишени; 2) трансген (ТG), кодирующий новую функцию реципиента; 3) последовательность, кодирую­щую устойчивость к соединению G-418 (Nеоr); 4) два разных гена тимидинкиназы (tk1 и tk2)ви­руса простого герпеса типов 1 и 2(HVS-tk1 и HVS-tk2)(рис. 5, А). Ключевым для позитив­но-негативной селекции является взаимное рас­положение этих элементов. Трансген и ген ус­тойчивости к G-418 (Neоr) должны находиться между двумя участками ДНК, гомологичными сайту-мишени, а гены HVS-tk1 и HVS-tk2 - по бокам этой конструкции. Если встраивание происходит в случайный сайт (не в НВ1 и НВ2), то с высокой вероятностью вместе с другими по­следовательностями интегрируют один или оба гена НVS-tk (рис. 5, А).Напротив, если инте­грация происходит в результате гомологичной рекомбинации путем двойного кроссинговера в нужный сайт, то в геном встроятся только трансген и ген Neоr, а гены НVS-tk — нет (рис. 5, Б).При выращивании трансфицированных клеток в присутствии G-418 клетки, не не­сущие ген Neоr, расти не будут. Выживут только клетки, в которых произошла интеграция - иными словами, осуществляется позитивная се­лекция. Если одновременно с G-418 в среду добавить ганцикловир, то рост клеток, синтези­рующих тимидинкиназу, будет подавлен, по­скольку этот фермент катализирует превраще­ние ганцикловира в токсичное соединение, летальное для клетки, т. е. произойдет негатив­ная селекция. Клетки, прошедшие через такое двойное сито, скорее всего будут содержать пос­ледовательность, встроившуюся в нужный сайт. Хоть этот метод не застрахован от ошибок, он позволяет обогатить клеточную популяцию клетками, несущими трансген в специфичном хромосомном сайте.
    Электропорация

    Этот метод основан на способности клеточной мембраны, становиться проницаемой для экзогенных молекул ДНК под действием импульсов высокого напряжения. Когда различия в потенциалах на внешней и внутренней поверхности мембраны превысят определенный уровень, формируются временные поры, через которые способны проходить экзогенные молекулы. Изменение количества пор в мембране обратимо при условии, что величина или продолжительность импульсов высокого напряжения не превысит критического предела. Размер пор зависит от длины импульсов, силы электрического поля, а также ионного состава среды.


    Электропорация.
    Электропорация была проведена, например, для эмбрионов креветки и моллюсков. Недостатком использования электропорации является постепенная деградация и уменьшение экспрессии трансгена со временем.
    Биобаллистическая трансформация

    Суть метода биобаллистической трансформации заключается в том, что на мельчайшие частички вольфрама, платины или золота, диаметром от 0,1 до 3,5 мкм, напыляется векторная ДНК, содержащая необходимую для трансформации генную конструкцию. Вольфрамовые, платиновые или золотые частички, несущие ДНК, на целлофановой подложке помещаются внутрь биобаллистической пушки. Суспензия животных клеток или эмбрионов, на ранней стадии развития, помещается под биобаллистическую пушку на расстоянии 10-25 см. В пушке вакуумным насосом уменьшается давление до 0,1 атм. В момент сбрасывания давления частички металла с огромной скоростью выбрасываются из пушки и, пробивая мембраны, входят в цитоплазму и ядра клеток. Обычно клетки, располагающиеся непосредственно по центру, погибают из-за огромного количества и давления частичек металла, в то время как в зоне 0,6-1 см от центра будут находиться трансформированные клетки (Рис.3). Далее клетки или эмбрионы животных переносят на среду для дальнейшего культивирования и регенерации.
    Бомбардировка микрочастицами была использована, например, для трансформации оплодотворенных яйцеклеток креветки, морского ежа. Процент выживших клеток после бомбардировки составляет приблизительно 70%, а также была доказана экспрессия трансгена у некоторых разновидностей рыб.
    Главным преимуществом данного метода является высокая эффективность встройки векторной ДНК, а также то, что можно получить трансгенные клетки в самые кратчайшие сроки.


    Биобаллистическая трансформация.

    Существенным недостатком этого метода является то, что эмбрионы, подвергшиеся бомбардировке, довольно редко развиваются в полноценных взрослых особей, большая часть из них рано или поздно гибнет.

    Липофекция
    Липосомы - это сферические образования, оболочки которых состоят из фосфолипидов. Их можно получить в результате резкого встряхивания или обработки ультразвуком водных эмульсий фосфолипидов.
    Метод липофекции основан на взаимодействии между положительно заряженными молекулами фосфолипидов, из которых состоят липосомы, и отрицательно заряженными молекулами ДНК. В настоящее время предложены три модели ассоциаций между ДНК и фосфолипидами . Суть первой модели состоит в том, что положительно заряженные липосомы присоединяются к отрицательно заряженным молекулам ДНК. Число липосом, присоединившихся к ДНК, зависит от размеров молекулы нуклеиновой кислоты. Во втором случае молекулы ДНК "проглатываются" липосомами, то есть ДНК электростатически взаимодействует с внутренней поверхностью липосомы. В третьем случае молекула ДНК окружена несколькими молекулами фосфолипидов, которые формируют своеобразную ленту с нуклеиновой кислотой.


    Липофекция (2-я модель).

    Липосомы, несущие положительный заряд, легко присоединяются к несущей отрицательный заряд плазматической мембране животных клеток, после чего путем эндоцитоза проникают в цитоплазму клеток. Механизмы же, обеспечивающие встраивание в геном и экспрессию ДНК, не достаточно изучены.
    К преимуществам данного метода можно отнести низкую токсичность липосом по отношению к клеткам, а также то, что экзогенный генетический материал защищен от действия нуклеаз посредством транспортировки в липосомах. Недостатком данного метода является то, что количество личинок, экспрессирующих трансген сокращается с возрастом.
    Более простой способ идентификации ЕS-клеток, несущих трансген в нужном сайте, осно­ван на использовании ПЦР. В этом случае ДНК-вектор содержит два участка, гомологичных сайту-мишени, по одному со стороны трансгена и со стороны клонированной бактериальной или синтетической (уникальной) последова­тельности, отсутствующей в геноме мыши (рис. 6). После трансфекции ЕS-клеток этим век­тором проводят скрининг трансфицированных клеток методом ПЦР. Один из ПЦР-праймеров (Р1) комплементарен участку клонированной бактериальной или синтетической (уникаль­ной) нуклеотидной последовательности интег­рировавшего вектора, а второй (Р2) — участку хромосомной ДНК, прилегающему к одному из гомологичных участков ДНК. При встраивании последовательности-мишени в случайный сайт ожидаемый продукт амплификации образовы­ваться не будет (рис. 6, А),а при сайт-специ­фической интеграции в результате ПЦР-ампли­фикации образуется фрагмент ДНК известного размера (рис. 6, Б),Таким образом можно идентифицировать пулы ЕS-клеток, содержа­щих трансген в нужном сайте, а пересевая клет­ки из этих пулов — получить клеточные линии с сайт-специфической вставкой.

    ЕS-клетки, в геном которых в нужном сайте встроен трансген, можно культивировать и ввести в эмбрион на стадии бластоцисты, а затем имплантировать такие эмбрионы в матку псевдобе­ременных «суррогатных» матерей. Мышата, у которых генетически модифицированные ЕS-клетки участвовали в образовании клеток заро­дышевой линии, могут дать начало трансгенным линиям. Для этого их нужно скрестить с особями той же линии, а затем скрестить их трансгенных потомков. В результате будут получены трансгенные мыши, гомозиготные по трансгену.

    В специфический хромосомный сайт ЕS-клеток можно не только встроить трансген, ко­дирующий какую-то новую функцию, но и на­правленно разрушить этот сайт интеграцией с его кодирующей областью специфической последовательности (обычно селективного маркер­ного гена) (рис. 7). Одна из задач направлен­ного нарушения («нокаута») гена состоит в исследовании влияния этого процесса на разви­тие организма и протекающие в нем физиологи­ческие процессы. Кроме того, есть надежда, что трансгенных животных с нарушением в опреде­ленном гене можно использовать как модель для изучения болезней человека на молекулярном уровне.

    Например, направленный «нокаут» гена ро­допсина мыши приводит к инактивации пало­чек сетчатки, что имитирует такую болезнь че­ловека, как пигментный ретинит. На мышах с «нокаутированным» геном родопсина можно изучать процесс дегенерации сетчатки, а также терапевтический эффект лекарственных средств, замедляющих или вообще останавливающих ге­нетически обусловленный патологический про­цесс. Уже создано более 250 линий мышей с «но­каутированными» генами, используюшихся в качестве моделей для изучения различных забо­леваний человека.

    В принципе подходы к созданию трансгенных животных с «улучшенными функциями» и с «потерей функций» сходны. К сожалению, плюрипотентные ЕS-клетки, аналогичные таковым у мышей, пока не обнаружены у крупного рога­того скота, овей, свиней и цыплят, но их поиск продолжается.



    Рис. 4. Получение трансгенных мышей с помощью генетической модификации эмбриональных стволовых клеток.


    Рис. 5. Позитивно-негативная селекция. А. Неспецифическая интеграция. В хромосому встроились оба гена тимидинкиназы (tk1 и tk2), два участка ДНК, гомологичные специфичным последовательностям хромосомной ДНК реципиентных клеток (НВ1 и НВ2), ген (Neor), обеспечивающий устойчивость к цитотоксическому соеди­нению G-418, и трансген (ТG). После трансфекции проводят тестирование клеток на устойчивость к G-418 и ганцикловиру, который становится цититоксичным для клеток, синтезирующих тимидинкиназу. Интеграция может произойти и по-другому, со встраиванием в хромосому только гена тимидинкиназы. В присутствии G-418 и ганцикловира все такие клетки тоже погибают. Б. Специфическая интеграция с помощью гомологичной рекомбина­ции. В результате двойного кроссинговера между гомологичными участками (НВ1 и HB2) векторной и хромосом­ной ДНК в последнюю встраивается фрагмент, не содержащий генов тимидинкиназы (tk1 и tk2). В присутствии G-418 и ганцикловира выживают только клетки, в которых прошла гомологичная рекомбинация.


    Рис. 6. Идентификация клеток, несущих трансген в специфическом сайте, при помощи ПЦР. А. В результа­те неспецифического встраивания векторной ДНК один из праймеров (Р2) не сможет гибридизоваться с участ­ком хромосомы, находящимся на определенном расстоянии от места отжига праймера Р1, и фрагмента нужно­го размера при амплификации не образуется. Р1 гибридизуется с уникальным участком (US) встроенной ДНК, отсутствующим в хромосомной ДНК клетки-реципнента. Б. В результате гомологичной рекомбинации между участками НВ1 и НВ2 встраиваемой ДНК, с одной стороны, и комплементарными участками хромосомы СS1 и СS2, с другой, образуются участки, с которыми могут гибридизоваться оба праймера, Р1 и Р2, и которые нахо­дятся на определенном расстоянии друг от друга. В ходе ПЦР-амплификации синтезируются фрагменты одно­го размера, которые можно идентифицировать при помощи гель-электрофореза. Если ПЦР-продукт нужной длины образовался, значит трансген (ТG), находящийся между гомологичными участками (НВ1 и НВ2), встро­ился в определенный сайт хромосомы.



    Рис. 7. «Нокаут» гена с помощью направленной гомологичной рекомбинации. Вектор несет селективный маркерный ген (smg) и фланкирующие его последовательности, гомологичные соответствующим участкам гена-мишени. Последний содержит пять экзонов (1 – 5). В результате гомологичной рекомбинации (штриховые линии) ген-мишень прерывается («нокаутируется»).

    Клонирование с помощью переноса ядра

    Плюрипотентность можно выявить, если пере­нести ядро тестируемой клетки в яйцеклетку с удаленным ядром и затем исследовать способ­ность последней к развитию и образованию жизнеспособного потомства. В нескольких ла­бораториях с переменным успехом исследовали плюрипотентность линий эмбриональных кле­ток, клеток плода и взрослой особи. Было пока­зано, что ядра эмбриональных клеток способны - хотя и с низкой эффективностью — обеспечивать развитие. Например, с помощью переноса ядер эмбриональных клеток крупного рогатого скота, культивированных непродолжительное время, были получены жизнеспособные особи. Всем известная овца по имени Долли была кло­нирована с помощью переноса ядра клетки молочной железы (вымени) взрослого животного (рис. 8). Так впервые была доказана плюрипотентность ядра дифференцированной взрос­лой клетки. Впрочем, нельзя исключить, что на самом деле донорское ядро было взято из не­дифференцированной клетки, присутствовав­шей в эпителии молочной железы организма-донора.

    Клонирование Долли из ядра дифференци­рованной клетки и трех других овец из ядер эмб­риональных клеток удалось осуществить благо­даря переносу ядер из клеток, находящихся в стадии покоя (G0), и, возможно, особенностям эмбриогенеза этого животного. Дело в том, что в течение первых трех делений зиготы овцы, за­нимающих несколько суток, происходит только репликация ДНК, ни один из генов не экспрессируется. Предполагается, что за это время вве­денная ДНК освобождается от специфичных для клетки регуляторных белков, а соответству­ющие гены эмбрионального развития связыва­ются с инициаторными эмбриональными бел­ковыми факторами из цитоплазмы яйцеклетки.

    Основная проблема, которую нужно решить для того, чтобы создание трансгенных живот­ных с помощью метода переноса ядер стало ре­альным, — это сохранение плюрипотентности клеток в непрерывной культуре. Если это удаст­ся, то генетическое изменение таких клеток и создание трансгенных организмов станет почти рутинной процедурой. Однако вследствие видо­вых различий во времени процесса деления клетки на ранних стадиях эмбриогенеза и ини­циации транскрипции в этот период пока не яс­но, удастся ли осуществить перенос ядра в слу­чае каких-либо других домашних животных, кроме овец, если донорское ядро будет находит­ся на той же стадии, что и яйцеклетка.



    Рис. 8. Клонирование овцы методом переноса ядра. Ядро яйцеклетки удаляют с помощью микропипетки. Культивируют эпителиальные клетки молочной железы взрослой особи и индуцируют их переход в фазу Gо. Осуществляют слияние клетки в Go-фазе и яйцеклеток, лишенных ядра, и выращивают восстановленные яйцеклетки в культуре или в яйцеводе с наложенной лигатурой до ранних стадий эмбриогенеза, а затем импланти­руют их в матку «суррогатной» матери, где и происходит дальнейшее развитие. В эксперименте, описанном Уилмутом и др., было проведено слияние 277 яйцеклеток с удаленными ядрами с клетками молочной железы в фазе Gо; из 29 эмбрионов только один развился до жизнеспособного плода.

    Перенос генов с помощью искусственных дрожжевых хромосом

    Хромосомы высших организмов содержат в своем составе протяженные молекулы ДНК. Например, длина ДНК одной из типичных хромосом человека составляет 100–200 миллионов пар оснований (м.п.о.). Исследование генов в хромосомах высших растений, животных и человека потребовало создания векторов для клонирования фрагментов ДНК длиной в несколько сотен тысяч пар оснований. Этим задачам отвечает недавно созданная система для клонирования сверхдлинных молекул ДНК на основе искусственно полученной мини-хромосомы дрожжей YAC (yeast artificial chromosome). YAC-вектор представляет собой кольцевую молекулу ДНК, содержащую ряд генетических элементов, которые позволяют ей существовать во внехромосомном состоянии в клетках дрожжей (рис. 9).

    Вектор заключает в себе две теломерные последовательности нуклеотидов TEL, необходимые для репликации концов мини-хромосомы, и область начала репликации ARS1, соединенную с последовательностью центромеры. Все эти функциональные элементы требуются для репликации YAC-вектора и его правильной передачи в дочерние ядра во время митоза. Кроме того, вектор содержит два селектируемых маркера TRP, восстанавливающих способность к росту ауксотрофных по триптофану клеток дрожжей в отсутствие экзогенного триптофана, а также маркер URA3, компенсирующий генетический дефект клеток дрожжей, который нарушает биосинтез урацила. В векторе имеется также ген супрессорной тРНК sup4, являющийся селектируемым маркером для поддержания вектора в мутантных бактериальных клетках, содержащих амбер-мутации в жизненно важных генах. Помимо этого, он обладает последовательностями нуклеотидов, необходимыми для его репликации в бактериальных клетках.

    При подготовке к клонированию YAC-вектор, выделенный в виде плазмиды, расщепляют рестриктазой BamHI и отделяют от образовавшегося короткого фрагмента ДНК, который не требуется для репликации YAC-вектора в дрожжах (этап 1). После этого проводят второе расщепление вектора рестриктазой EcoRI, сопровождающееся образованием двух его "плеч", каждое из которых на одном из концов содержит теломерные последовательности хромосомы дрожжей (этап 2). На заключительном этапе (3) полученные "плечи" лигируют с крупными EcoRI-фрагментами клонируемой ДНК, которые получают путем частичного расщепления высокомолекулярной хромосомной ДНК, предназначенной для клонирования. Полученными таким образом рекомбинантными ДНК трансформируют протопласты клеток дрожжей, и образовавшиеся трансформанты отбирают на селективной твердой питательной среде. В таком векторе удавалось осуществлять клонирование фрагментов ДНК длиной до 700 т.п.о.

    При всех своих достоинствах системы клонирования, основанные на векторах семейства YAC, обладают рядом существенных недостатков. В рекомбинантных ДНК, поддерживаемых в таких системах, часто возникают внутренние делеции. Кроме того, при введении рекомбинантных ДНК в клетки дрожжей иногда имеет место проникновение в одну клетку нескольких молекул вектора со вставками. В итоге отдельные клоны дрожжевых клеток могут содержать несколько несцепленных друг с другом молекул рекомбинантных ДНК, а рекомбинация между ними вообще может приводить к образованию химерных молекул. Все это очень затрудняет физическое картирование генов в хромосомах исследуемых объектов.



    Рис. 9. Схема клонирования сверхдлинных молекул ДНК с использованием вектора YAC

    1 – линеаризация ДНК вектора рестриктазой BamHI;

    2 – расщепление линеаризованной ДНК вектора рестриктазой EcoRI с образованием "плечей"; 3 – введение в вектор клонируемого EcoRI-фрагмента ДНК

    Трансгенных мышей получали микроинъек­цией в пронуклеус оплодотворенной яйцеклет­ки или трансфекцией ЕS-клеток с помощью YАС, несущих несколько родственных генов или один большой ген. Трансгенные мыши, не­сущие кластер из пяти функциональных генов β-глобина человека суммарной длиной пример­но 250 т. п. н., экспрессировали все эти гены тканеспецифично и в нужное время — точно так же, как это происходит у человека. Такое соответствие обеспечивалось фланкирующими их последовательностями, которые содержат промотор и другие важные регуляторные элементы.

    Создание мышей, которые синтезировали бы только человеческие антитела, — это примеча­тельный пример трансгеноза с помощью YАС. Моноклональные антите­ла можно использовать для лечения некоторых заболеваний человека. Однако получить челове­ческие моноклональные антитела практически невозможно. К сожалению, и моноклональные антитела грызунов иммуногенны для человека. Чтобы «очеловечить» существующие моноклональные антитела грызунов, были разработаны сложные стратегии с использованием рекомбинантных ДНК. В результате этих трудоемких процедур удалось получить Fv- и Fab-фрагменты, зачастую обладающие каким-то сродством к специфическому антигену. Возможно, техноло­гического прорыва удастся достичь, если ис­пользовать для получения полноразмерных че­ловеческих антител более доступный метод с использованием гибридом.

    Синтез природных антител — это настоящее чудо. Антитело — очень сложная тетрамерная конструкция, состоящая из двух пар разных це­пей. Одна из них называется тяжелой (Н), а дру­гая - легкой (λили κ). Эти термины отражают различия в молекулярных массах субъединиц антитела. Генетические особенности каждой тя­желой цепи определяются комбинацией вариа­бельного (VH), дивергентного (DH), шарнирного (JH) и константного (СH) участков (доменов) со­матической ДНК в В-клетке. Известны два типа легких цепей, λ и κ, которые образуются в ре­зультате перестройки их собственных вариа­бельных (Vλ, Vκ, шарнирных (Jλ,Jκ) и кон­стантных (Сλ, Сκ) доменов. Данная В-клетка синтезирует один вид антител, с уникальной комбинацией участков, составляющих Н-цепь, и либо перестроенной λ-,либо κ-цепью.

    Набор генетических элементов, обеспечива­ющих образование множества разных Н-цепей антител человека, включает около 95 VH-доме­нов, 30 DH-доменов, 6 JH-доменов и 5 основных константных (Сα, Сγ, Сδ, Сε, Сμ) доменов. Локус κ-генов содержит примерно 76 Vκ-доменов, 5 Jκ-доменов и один константный (Сκ) участок. Размер Н-локусов и κ-генов — от 1 до1,5 т. п. н. Для создания трансгенных мышей, способных синтезировать множество различных человеческих антител, необходимо инактивировать мышиные гены Н- и L-цепей, а затем встроить в хромосомную ДНК мыши YАС, со­держащую гены Н- и L-цепей каждого человече­ского гена иммуноглобулина.

    Чтобы решить эту задачу, мышиные гены Н- и κ-цепей были заменены («нокаутированы») небольшим участком кластера генов Н-цепи че­ловека и кластера ге­нов κ-цепи человека. Трансгенные мыши с таким набором генов антител человека синтезировали человеческие антитела к некоторым антигенам; кроме того, были созданы гибридомы, продуци­рующие человеческие моноклональные антите­ла. Однако разнообразие человеческих антител, продуцируемых такими трансгенными мышами, было невелико вследствие ограниченности на­бора вариабельных сегментов Н- и κ-цепей. Чтобы решить эту проблему, создали YАС с большим числом генов вариабельных участков Н- и κ-цепей гемоглобина человека.

    Объединив четыре разные YАС с генами Н-це­пей гемоглобина человека, создали YАС длиной 1000 т. п. н., несущую 66 VH-доменов, около 30 DH-сегментов, 6 JH-доменов, Сμ, Сδ и Сγ. Анало­гично, из трех YАС, несущих различные домены Vκ, создали YАС длиной 800 т. п. н. с 32 Vκ-доме­нами, 5 Jκ-доменами и Сκ. ЕS-клетки трансфицировали по отдельности YАС с генами Н- и κ-цепей методом слияния клеток, отобрали клетки, в которых произошла интеграция YАС, с помо­щью селективного маркера и проверили целост­ность каждой вставки методом ПЦР. Инъециро­вали клетки, несущие встроенные гены Н- либо κ-цепи, в бластоцисты и идентифицировали особь-основателя с помощью ПЦР. Трансгенных мышей со вставками генов Н- и κ-цепей скрещи­вали по отдельности с мышами с инактивированными локусами этих цепей. Затем потомство скрещивали между собой, чтобы получить мы­шей, лишенных функциональных мышиных ге­нов Н- и κ-цепей, но несущих обе вставки генов Н- и κ-цепей гемоглобина человека.

    Трансгенные мыши с увеличенным числом человеческих VH- и Vκ-доменов синтезировали человеческие антитела. Их иммунизировали тремя разными антигенами, и в каждом случае гибридомы секретировали человеческие моноклональные антитела, обладающие высоким сродством к антигену, которым животные были иммунизированы. Весьма вероятно, что с помо­щью такой трансгенной системы удастся полу­чать человеческие моноклональные антитела для использования их в медицине.
      1   2


    написать администратору сайта