Монтаж,эксплуатация и ремонт аппаратуры защиты и у. Поиск Главная Новости Регистрация Контакты
Скачать 380.78 Kb.
|
Блок статического байпасаБлок статического байпаса состоит из двух трехфазных тиристорных переключателей :
Выбор такого переключателя обусловлен высоким быстродействием тиристоров и их способностью выдерживать значительные кратковременные перегрузки по току. При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки. ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. ИБП сконструирован так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса) в любом случае постарается обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора. Для обеспечения работы и нормального функционирования всех частей ИБП, необходимо звено, которое осуществляло бы связь между всеми этими частями. Можно рассмотреть несколько видов таких схем: 1. Аналоговые системы, операции регулирования в которых осуществляются путем сравнения, усиления и преобразования аналоговых сигналов. Погрешность установки параметров в такой системе сильно зависит от параметров активных и пассивных элементов схемы. Такие системы используются, в основном в недорогих устройствах. 2. Цифровые системы, операции управления проводятся над цифровыми величинами, полученными из аналоговых сигналов путем оцифровки аналого- цифровыми преобразователями (АЦП). Точность таких систем намного выше за счет использования математического аппарата вычисления. 3. Комбинируемые, операции управления и регуляции в которых выполняются либо аналоговыми, либо цифровыми устройствами. В нашем случае система управления работой ИБП построена на микроконтроллере ATTiny26. Он представляет собой высокопродуктивный контролер с функциями многоканального аналого-цифрового преобразователя. Ввод и вывод информации в микроконтроллер (далее МК) может осуществляться как в аналоговом так и в цифровом виде. Использование новейших разработок, которые содержат в своем составе МК, позволяет намного упростить схему. Микроконтроллер управляет работой как схемы управления так и работой всего устройства. Схема управления выполняет роль интерфейса ИБП, подавая соответствующую команду включения на устройство коммутаций, осуществляет управление переключения нагрузки на питание от сети или от аккумуляторных батарей, следит за напряжением на аккумуляторных батареях (далее АБ). Если напряжение на АБ становится меньшим 10,5 В, то осуществляется аварийное отключение ИБП. Аварийное отключение осуществляется также, когда температура окружающей среды выходит за пределы допустимой. Для измерения температуры используется температурный датчик. На устройство управления работой ИБП поступает информация о величинах напряжения в сети. Обрабатывая эту информацию МК производит соответствующие сигналы управления для других узлов, составляющих блока. Для измерения выходной мощности используется датчик тока. Если через датчик протекает ток больше допустимого, схема управления отключает нагрузку. Это обеспечивает защиту от выхода из строя устройства преобразования постоянного напряжения в переменную. Особенно большое значение в ИБП имеет наличие связи с ПК. Это позволяет оператору (администратору) следить за состоянием сети, состоянием АБ и всей работы ИБП. В данном случае используется стандартный интерфейс связи МК и ПК – RS-232. Это позволяет осуществлять дистанционный мониторинг ИБП и безопасное завершение работы ПК при аварии или долговременном отсутствии напряжения в сети (при условии настройки программного обеспечения ПК). Входное напряжение 380В, 50Гц поступает через устройство коммутации и сетевой фильтр на зарядное устройство и байпас. Сетевой фильтр предназначен для предотвращения попадания помех в сеть, которые возникают при работе ИБП. Преобразователь переменного напряжения в постоянное выполняет роль преобразователя переменного напряжения 220В в постоянное 200В. Данное устройство построено по схеме импульсного преобразователя с ШИМ. Напряжение на его выходе постоянно, но не стабилизировано, то есть зависит от изменения входного напряжения. Для стабилизации используется стабилизатор постоянного напряжения. Стабилизатор построен по схеме однотактного импульсного повышающего стабилизатора. Напряжение на аккумуляторе изменяется в пределах 10,5...13,8 В, а выходное ИБП должно оставаться стабильным. Преобразователь постоянного напряжения в переменное осуществляет формирование выходного стабилизированного напряжения 220В, 50Гц. Управление и синхронизацию данного устройства с сетью осуществляет устройство управления ИБП. Выходной фильтр служит фильтром электромагнитных помех и предотвращению их попадания в нагрузку. Алгоритм работы ИБП приведен в графической части проекта. Другие элементы ИБП с двойным преобразованием Сравним еще раз схемы ИБП с двойным преобразованием и взаимодействующего с сетью. У ИБП с двойным преобразованием отсуствуют (хотя и не у всех моделей) некоторые элементы: фильтры шумов и импульсов. В ИБП этого типа импульсы и шумы фильтруются в результате выпрямления напряжения переменного тока: на выходе выпрямителя имеются схемы подавления пульсаций напряжения, выполняющие роль фильтров. В процессе второго преобразования энергии шумы и импульсы еще раз уменьшаются и нагрузка питается чистым синусоидальным напряжением. Поэтому отсутствие в схеме фильтров можно считать своего рода фокусом: внутри ИБП есть элементы, выполняющие эти функции, но называющиеся по другому. Кроме того, в некоторых ИБП с двойным преобразованием энергии установлены варисторные шунты. Блок управления ИБП с двойным преобразованием энергии не анализирует состояния электрической сети (вы видите, что на блок-схеме нет соответствующей стрелки). В этом нет необходимости, ведь нам не нужно управлять переключением (или, вернее, переходом) ИБП с двойным преобразованием на работу от батареи - этот переход производится или, вернее, происходит, без участия управляющей электроники. Нет необходимости и производить анализ формы напряжения переменного тока на входе ИБП: выпрямитель ИБП с двойным преобразованием энергии может питаться напряжением переменного тока практически любой формы - все равно на выходе выпрямителя будет стабилизированное напряжение постоянного тока, а на выходе инвертора - чистая синусоида. Задача блока управления - регулировать напряжение на выходе выпрямителя, напряжение на выходе инвертора (как и у других, рассмотренных ранее ИБП) и не пропустить момент, когда понадобится произвести переключение на работу через статический байпас. |