Главная страница
Навигация по странице:

  • Библиографический список

  • пк2_социология_Жураева_Рушида. Практическое задание по дисциплине Социология


    Скачать 73.64 Kb.
    НазваниеПрактическое задание по дисциплине Социология
    Дата06.11.2021
    Размер73.64 Kb.
    Формат файлаdocx
    Имя файлапк2_социология_Жураева_Рушида.docx
    ТипДокументы
    #264432
    страница3 из 3
    1   2   3
    Распределение ответов для шкальных типов

    Вопросы

    Ответы

    Вопрос 1 («стук в дверь»)

    Вопрос 2 («публичная дискуссия»)

    Вопрос 3 («опасение вызвать раздражение»)

    Число случаев, N


    Паттерн ответа

    («+» — «верно»,

    «—» — «неверно»):


    +

    +

    +

    30


    +

    +



    50

    +





    45







    10




    Всего 135

    Судя по таблице 6.3, априорное упорядочение вопросов совпало с реальным: самый «легкий» первый вопрос оказался и самым популярным, тогда как на самый «тяжелый» вопрос шкалы положительно ответили лишь 30 опрошенных: нежелание высказывать свою точку зрения требует значительно большего количества «благопристойности», чем привычка стучать в дверь.

    Если бы использованный нами исходный порядок вопросов не совпал бы с их реальным ранжированием по числу позитивных ответов, то это само по себе не доказывало бы «нешкалируемости» данной совокупности пунктов: для того, чтобы получить столь же красивую «гутмановскую» картину распределения ответов, как в предыдущей таблице 6.2, было бы достаточно просто переставить столбцы таблицы так, чтобы первым оказался самый популярный вопрос с наибольшим числом положительных ответов и т. д. (Упорядоченную таким образом таблицу обычно называют шкалограммной матрицей, или шкалограммой.)

    Реальной проблемой в нашем примере, как и в большинстве случаев построения гутмановской шкалы, стало наличие так называемых нешкальных типов, т. е. таких паттернов ответа, которые попросту не укладываются в логику одномерной модели с монотонно возрастающей вероятностью ответа. Примером «нешкального» паттерна мог бы быть положительный ответ на третий вопрос при отрицательных ответах на первые два вопроса (— — +). То обстоятельство, что некий респондент, бесцеремонно входящий в чужую дверь без стука, боится открыто выразить свое мнение, может быть и случайной ошибкой, и результатом влияния какой-то посторонней переменной: возможно, отвечая на третий вопрос, этот человек думал не о хороших манерах, а о том, что высказывать свое мнение открыто в его привычной среде «невыгодно», недальновидно и т. п. Для того чтобы проверить шкальную гипотезу о том, что данная совокупность вопросов дает хорошее приближение к гутмановской шкале, нам следует трактовать «нешкальные» типы ответа как ошибки и оценить, насколько велико отклонение от идеальной модели. Пусть наш исследователь получил следующее распределение «нешкальных» типов (см. табл. 4).

    Разумно предположить, что «нешкальный» тип — — + можно отнести к шкальному типу — — — с одной ошибкой. Второй «нешкальный» паттерн ответа — + + можно рассматривать как отклонение от школьного типа + + + также с одной ошибкой (если бы мы отнесли этот «нешкальный» паттерн к типу — — —, то ошибок было бы две, а не одна). Существуют разные способы оценки приемлемости наблюдаемых отклонений от совершенной шкалы, содержащей лишь шкальные паттерны ответа. Здесь мы воспользуемся самым простым и грубым, рассчитав коэффициент воспроизводимости шкалы Rep (от англ. reproducibility) по следующей формуле:



    В нашем примере мы, основываясь на идеальной модели шкалы, можем воспроизвести (предсказать) по три ответа для 143 респондентов. Всего мы сделаем 429 предсказаний для отдельных ответов. Из них 8 ответов окажутся ошибочными (каждая ошибка будет отличаться от ожидаемого ответа только на 1 балл). Коэффициент воспроизводимости составит, таким образом, 0,98 (или 98%).

    Таблица 4
    Распределение ответов для «нешкальных» типов

    Вопросы

    Ответы

    Вопрос 1

    («стук в

    дверь»)

    Вопрос 2

    («публичная

    дискуссия»)

    Вопрос 3

    («опасение

    вызвать

    раздражение»)

    Число

    случаев


    Паттерн ответа:






    +

    3



    +



    5




    Всего 8

    На практике принято считать приемлемым любое значение коэффициента воспроизводимости, которое превышает 0,90 (90%). Очевидно, что 100%-й воспроизводимостью может обладать лишь совершенная гутмановская шкала.

    Если полученное значение коэффициента воспроизводимости превосходит заданный порог, данная совокупность вопросов может использоваться в качестве шкалы Гутмана. При этом вопросам присваиваются шкальные значения, отражающие их ранжирование по шкале (скажем, 1, 2 и 3), так что самый «легкий» вопрос получает самый низкий балл. Респонденты получают индивидуальный балл, соответствующий их шкальным типам (число положительных ответов либо суммарный балл).

    Следует помнить о том, что полученная шкала отражает наличие определенной упорядоченности в той матрице реальных данных, для которых проверялась гутмановская модель. Иными словами, вывод о том, что данная совокупность вопросов составляет шкалу Гутмана, верен для данной выборки и для данной серии наблюдений. Перенос шкалы с одной популяции на другую требует новых данных и нового обоснования.

    Мы рассмотрели лишь некоторые, относительно простые, методы конструирования индексов и шкал в социологии. Проанализированные нами примеры подтверждают полезность шкал для повышения качества социологического измерения (т. е. его надежности и валидности) и для экономного представления эмпирической информации, получаемой в ходе исследования. Наконец, анализ моделей измерения, лежащих в основании любой шкалы, часто помогает прояснить природу теоретических понятий и взаимосвязей между ними. Еще одним шагом к содержательным и основанным на реальных эмпирических наблюдениях выводам является анализ данных.

    Библиографический список

    1. Аванесов В.С. Тесты в социологическом исследовании. М.: Наука, 2010.

    2. Грин Б.Ф. Измерение установки // Математические методы в современной буржуазной социологии. М.: Прогресс, 2009.

    3. Девятко И.Ф. Диагностическая процедура в социологии: очерк истории и теории. М.: Наука, 2008.

    4. Клигер С.А., Косолапов М.С., Толстова Ю.Н. Шкалирование при сборе и анализе социологической информации. М.: Наука, 2009.

    5. Осипов Г.В., Андреев Э.П. Методы измерения в социологии. М.: Наука, 2010.

    6. Толстова Ю.Н. Логика математического анализа социологических данных. М.: Наука, 2009.

    7. Ядов В.А. Социологическое исследование: методология, программа, методы. 2-е изд. М.: Наука, 2010. Гл. 3.
    1   2   3


    написать администратору сайта