электив 9 кл 2017-18 Мамаева Е. Н.. Практикум по решению задач для классов 9 а, б, в количество часов по учебному плану 34
Скачать 36.11 Kb.
|
Муниципальное бюджетное общеобразовательное учреждение Усть-Ишимский лицей «Альфа» Усть-Ишимского муниципального района Рассмотрена Принята «Утверждено» На заседании МО учителей Педагогическим советом Директор МБОУ «лицей «Альфа» физико-математического цикла МБОУ «лицей «Альфа» ____________/Н.Г. Сухатская/ Протокол № Протокол № ______ от__________ 2017г. от _________________ Руководитель МО _________/Мамаева Е. Н./ элективный курс «Математический практикум по решению задач» для классов: 9 а, б, в количество часов по учебному плану: 34 учебный год 2017-2018 Мамаева Е.Н. Усть-Ишим 2017 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа элективного курса «Математический практикум по решению задач» составлена на основе двух книг: 1) Элективный курс. Текстовые задачи: сложности и пути их решения. Алгебра. 9 класс./ Сост. Г. И. Григорьева. – Волгоград: ИТД «Корифей», 2007. – 112 с. Данный курс состоит из 22 часов (раздел 1-6). 2) Математика. 8-9 классы: элективные курсы «Самый простой способ решения непростых неравенств», «Избранные задачи по планиметрии», «Решение задач с помощью графов» / авт. – сост. Л. Н. Харламова. – Волгоград: Учитель, 2007. – 89 с.. Из второй книги был взят курс «Избранные задачи по планиметрии» в объёме 8, 5 часов. Занятие «Проверь себя» 0.5 часа было заменено - 4 часа были добавлены впервые 5 разделов на практикум по решению задач (по одному часу в каждый раздел). Программа рассчитана на 34 часа по 1 часу в неделю. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА. У обучающихся могут быть сформированы личностные результаты: ответственное отношение к учению, готовность и способность обучающихся к самообразованию на основе мотивации к обучению и познанию, осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов; способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений; умение контролировать процесс и результат математической деятельности; коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности; иметь опыт публичного выступления перед учащимися своего класса и на научно-практической ученической конференции; оценивать информацию (критическая оценка, оценка достоверности); критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; креативность мышления, инициативы, находчивости, активности при решении задач. Метапредметные: регулятивные обучающиеся получат возможность научиться: составлять план и последовательность действий; определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата; предвидеть возможность получения конкретного результата при решении задач; осуществлять констатирующий и прогнозирующий контроль по результату и способу действия; видеть математическую задачу в других дисциплинах, окружающей жизни; концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий; самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задачи с учётом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений; самостоятельно приобретать и применять знания в различных ситуациях для решения различной сложности практических заданий, в том числе с использованием при необходимости и компьютера; интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ); логически мыслить, рассуждать, анализировать условия заданий, а также свои действия; адекватно оценивать правильность и ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения. Познавательные обучающиеся получат возможность научиться: устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы; формировать учебную и общекультурную компетентность в области использования информационно-коммуникационных технологий; выдвигать гипотезу при решении учебных задач и понимать необходимость их проверки; планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; выбирать наиболее эффективные и рациональные способы решения задач; интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ); Коммуникативные обучающиеся получат возможность научиться: организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников; взаимодействовать и находить общие способы работы; работать в группе; находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение; прогнозировать возникновение конфликтов при наличии различных точек зрения; разрешать конфликты на основе учёта интересов и позиций всех участников; координировать и принимать различные позиции во взаимодействии; аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности; аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности; работать в группе; оценивать свою работу; слушать других, уважать друзей, считаться с мнением одноклассников. Предметные Учащиеся узнают и получат возможность научиться: основными методами и приёмами решения текстовых задач; классификацию текстовых задачи и алгоритмы их решения определять тип текстовой задачи; узнавать особенности методики решения задач; применять полученные математические знания в решении жизненных задач; ключевые термины, формулы курса планиметрии в разделе «Треугольники», « Четырёхугольники»; основные алгоритмы решения треугольников; применять теоретические знания при решении задач; использовать возможности ПК для самоконтроля т отработки основных умений, приобретённых в ходе изучения курса. пользоваться предметным указателем энциклопедий, справочников и другой литературой для нахождения информации. СОДЕРЖАНИЕ УЧЕБНОГО КУРСА 1) Элективный курс. Текстовые задачи: сложности и пути их решения. Алгебра. 9 класс./ Сост. Г. И. Григорьева. – Волгоград: ИТД «Корифей»,2007. – 112 с. Данный курс состоит из 22 часов (раздел 1-6). Текстовые задачи и техника их решения (1 ч.). Текстовая задача. Виды текстовых задач и их примеры. Решение текстовой задачи. Этапы решения текстовой задачи. Решение текстовых задач арифметическими приёмами (по действиям). Решение текстовых задач методом составления уравнения, неравенства или их системы. Решение текстовой задачи с помощью графика. Чертёж к текстовой задаче и его значение для построения математической модели. Задачи на движение (5 ч.). Движение тел по течению и против течения. Равномерное и равноускоренное движения тел по прямой линии в одном направлении и навстречу друг другу. Графики движения в прямоугольной системе координат. Чтение графиков движения и применение их для решения текстовых задач. Решение текстовых задач с использованием элементов геометрии. Особенности выбора переменных и методики решения задач на движение. Составление таблицы данных задачи на движение и её значение для составления математической модели. Задачи на совместную работу (5 ч.). Формула зависимости объёма выполненной работы от производительности и времени её выполнения. Особенности выбора переменных и методики решения задач на работу. Составление таблицы данных задачи на работу и её значение для составления математической модели. Задачи на проценты (5 ч.). Формулы процентов и сложных процентов. Особенности выбора переменных и методики решения задач с экономическим содержанием. Задачи на сплавы и смеси (5 ч.). Формула зависимости массы или объёма вещества в сплаве, смеси, растворе («часть») от концентрации («доля»)и массы или объёма сплава, смеси, раствора («всего»). Особенности выбора переменных и методики решения задач на сплавы, смеси, растворы и её значение для математической модели. Составление таблицы данных задачи на сплавы, смеси, растворы и её значение для составления математической модели. Решение задач с помощью графика. Задачи на прогрессии (4 ч.). Формулы общего члена и суммы первых n членов арифметической и геометрической прогрессий. Формулы арифметической и геометрической прогрессий, отражающие их характеристические свойства. Особенности выбора переменных и методики решения задач на прогрессии. 2) Математика. 8-9 классы: элективные курсы «Самый простой способ решения непростых неравенств», «Избранные задачи по планиметрии», «Решение задач с помощью графов» / авт. – сост. Л. Н. Харламова. – Волгоград: Учитель, 2007. – 89 с. Избранные задачи по планиметрии (8 ч.). Соотношения между сторонами и углами прямоугольного треугольника, теорема Пифагора, теорема синусов и косинусов, основное тригонометрическое тождество, вписанные и описанные окружности. Параллелограмм и трапеция, вписанные и описанные четырёхугольники, компьютерная модель «Четырёхугольники». Площадь прямоугольника, параллелограмма, треугольника и трапеции; применение разнообразных формул площади треугольника, площади подобных фигур. Компьютерная модель «Измерение площади». Окружности, вписанные и описанные около треугольника, применение формул: Компьютерная модель «Вписанные и описанные окружности». Компьютерная модель « Решение треугольников» предполагает проверку знаний и умений по теме с помощью программы «Планиметрия». ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
|