Главная страница
Навигация по странице:

  • Основной задачей турбогенератора

  • Организация и выполнение работ по эксплуатации и ремонту электроустановок отчет учебной практики. отчет11. Прежнее значение в системе электроснабжения Москвы. Отпала необходимость иметь на


    Скачать 2.68 Mb.
    НазваниеПрежнее значение в системе электроснабжения Москвы. Отпала необходимость иметь на
    АнкорОрганизация и выполнение работ по эксплуатации и ремонту электроустановок отчет учебной практики
    Дата12.09.2022
    Размер2.68 Mb.
    Формат файлаdocx
    Имя файлаотчет11.docx
    ТипДокументы
    #673941
    страница3 из 5
    1   2   3   4   5
    Часть этих потребителей являются ответственными (техничес­кое водоснабжение, маслоохладители трансформаторов, масло­насосы МНУ, система пожаротушения, механизмы закрытия зат­воров напорных трубопроводов). Нарушение электроснабжения этих потребителей с. н. может привести к повреждению или отключе­нию гидроагрегата, снижению выработки электроэнергии, разру­шению гидротехнических сооружений. Такие потребители долж­ны быть обеспечены надежным питанием от двух независимых источников [5].

    На рис. 9 приведен пример схемы питания с. н. мошной ГЭС.



    Рисунок 9 - Схема питания с. н. мощной ГЭС с общими питающими трансформаторами

                Агрегатные с. н. питаются от отдельных секций 0,4/0,23 кВ. Часть потребителей общестанционных с. н. может быть значительно уда­лена от здания ГЭС, поэтому возникает необходимость распреде­ления электроэнергии на более высоком напряжении (3,6 или 10 кВ). В этом случае предусматриваются главные трансформаторы с. н. T1T2 и агрегатные T5T8. Трансформаторы T9T12 служат для питания общестанционных нагрузок. Резервное питание сек­ций 6 кВ осуществляется от местной подстанции, оставшейся после строительства ГЭС. Резервирование агрегатных с. н. осуществляет­ся от резервных трансформаторов Т3, Т4. Ответственные потреби­тели с.н., отключение которых может принести к отключению гидроагрегата или снижению его нагрузки, присоединяются к раз­ным секциям с. н.

    Мощность трансформаторов агрегатных с. н. выбирается по сум­марной нагрузке с. н. соответствующих агрегатов. Главные трансформаторы(T1T2) выбираются с учетом взаимного резервиро­вания и с возможностью их аварийной перегрузки.

    При большом числе и значительной единичной мощности аг­регатов находит применение схема раздельного питании агрегат­ных и общестанционных потребителей. Агрегатные сборки 0,4 кВ получают питание от индивидуальных трансформаторов, присое­диненных отпайкой к энергоблоку. Резервирование их осуществ­ляется от трансформаторов, присоединенных к РУ с. н. 6—10 кВ, которое получает питание от автотрансформаторов связи между РУ ВН и РУ СН. На рисунке 10 приведена однолинейная схема главных электрических соединений подстанций предприятия.



    Рисунок 10 - Однолинейная схема главных электрических соединений подстанций
    Основной задачей турбогенератора является трансформация механической энергии паровой либо газовой турбины в электрическую. Осуществляется это при большой скорости вращения ротора (от 3000 до 15000 оборотов в минуту).

    Турбогенераторы – это довольно непростой тип электрических агрегатов, в котором сочетаются:

    • проблемы с мощностью;

    • электромагнитные характеристики;

    • размеры;

    • охлаждение и нагрев;

    • статическая и динамическая прочность.

    Исполняются данные устройства горизонтально и имеют возбуждающую обмотку с неявно выраженными полюсами, которая находится на самом роторе. А на статоре располагается трехфазная обмотка.

    Принцип работы турбогенератора

    Механическая энергия самой турбины превращается в электрическую. Это возможно благодаря вращающемуся магнитному полю, создаваемого с помощью непрерывного тока, протекающему в обмотке самого ротора. Это способствует и формированию трехфазного переменного тока, а также напряжению в статоре (его обмотках). Крутящий момент от двигателя передается на ротор генератора.

    Данная характеристика турбогенератора позволяет при обращении ротора образовывать магнитный момент, который и создает электрический ток в его обмотках. Благодаря системе возбуждения в агрегате обеспечивается поддержка постоянного напряжения на всех режимах функционирования данного устройства.

    Циркуляция воды в теплообменниках и газоохладителях происходит при помощи насосов, которые располагаются вне самого турбогенератора.

    Применяются турбогенераторы на атомных и тепловых электростанциях.

    В зависимости от мощности данного оборудования, его разделяют на три основные категории:

    • 2,5 – 32 МВт;

    • 60 – 320 МВт;

    • мощность турбогенераторов более чем 500 МВт.

    Также турбогенераторы бывают:

    • двухполюсные с частотой вращения от 1500 до 1800 оборотов в минуту;

    • четырёхполюсные (300 – 3600 об/мин).

    Паровой турбогенератор

    Паровой турбогенератор обладает повышенной надежностью своей работы, при этом развивая проектную мощность постоянно на протяжении многих часов работы. Такие современные устройства могут обладать мощностью до 1300 МВт. Зачастую, паровые турбогенераторы могут работать параллельно. Передача мощности при этом может осуществляться в одну электрическую цепь.

    Тепловая экономичность электростанции, в которой установлен паровой турбогенератор, напрямую зависит от видов и параметров теплового цикла использования тепла образовавшегося пара, а также от самого оборудования и его характеристик.

    Зачастую, паровая турбина турбогенератора, обладающая небольшой мощностью, монтируется в промышленных котельных, там, где используется мазута или твердое топливо. Турбины тут функционируют в качестве дросселирующих устройств редукционно-охладительных установок, на разнице величины давления от котла до промышленного отбора, либо же теплообменника. /p>

    Мощность турбогенератора, работающего в данной отрасли, находится в пределах от 250 киловатт до 5 Мегаватт. Такая установка позволяет получить очень дешевую электрическую энергию. Она получается в восемь раз дешевле покупной. А все оборудование, при работе больше чем 5000 часов в год, сможет быстро окупить себя, уже за три года.

    Паровая турбина турбогенератора маленькой нагрузки может применяться не только лишь в качестве привода электрогенератора, но также и для приведения в действия устройств, необходимых для работы котельных любого назначения.

    С татор турбогенератора

    Он изготавливается из корпуса, в котором имеется сердечник с углублениями для установки в них обмотки. В основу сердечника входят слои, которые набираются из нескольких листов стали (электротехнической), дополнительно имеющих лаковое покрытие. Между этими слоями имеются специальные каналы для вентиляции (порядка 5 – 10 сантиметров).

    В месте, где находятся углубления, обмотка закрепляется при помощи клиньев, а ее передняя часть укреплена на специальных кольцах. Располагается она с конца статора. Сам сердечник помещен в прочный сварной корпус, изготовленный из стали.

    Ротор турбогенератора

    Чтобы сформировалась высокая прочность, ротор турбогенератора выпускают в виде толстого цилиндра из сплошной стальной заготовки. В таком случае используют углеродистую сталь, как правило, марки «35» (в случаи малой нагрузки данного агрегата).

    Ротор турбогенератора оснащен двумя рядами отверстий, расположенных вдоль первых обмоточных отверстий. Необходимо это, чтобы закрепить там специальные балансировочные грузы. Длина ротора турбогенератора существенно меньше его активных размеров.

    При частоте вращения порядка 3000 оборотов в минуту, ротор изготавливают диаметром в 1,2 метра. Обмотку делают из специальной полосовой меди с дополнительной присадкой серебра. Она удерживается в пазах благодаря дюралевым клиньям.

    Для того, чтобы повысить тепловую стойкость ротора от воздействия на него обратных токов, сверху изоляции обмотки укладываются короткозамкнутые кольца, которые изготавливают в виде двухслойного медного гребенка.

    Для повышения единичной мощности охлаждение турбогенератора делают более интенсивным, без существенного увеличения габаритов. Если нагрузка таких устройств превышает 50 Вт, то используют жидкое либо водородное охлаждение его обмоток.

    Охлаждение турбогенераторов

    Турбогенераторы с воздушным охлаждением

    Изготавливаются такие агрегаты нагрузкой в 2,5; 4; 6; 12 и 20 МВт. Конструкция таких устройств осуществляется закрытым типом. Самовентиляция обеспечивается по закрытому циклу. Вращение воздуха в турбогенераторе происходит благодаря вентиляторам, которые закрепляются с обеих сторон внутри ротора.

    Для того, чтобы избежать проникновения пыли вовнутрь, на валу имеются специальные воздушные уплотнители. А утечка воздуха компенсируется благодаря его засосу из внешней среды.

    Устройства с водородным охлаждением

    Это устройства, мощность которых составляет 60 и 100 Мегаватт.

    Охлаждение турбогенератора, а именно роторных обмоток, исполняется напрямую водородом. Статор охлаждается косвенно и обдает сварную оболочку, которая газонепроницаема и неразъемная.

    Агрегаты, охлаждаемые водой

    Обмотки ротора и статора устройств такого типа охлаждаются при помощи непосредственной подачи воды. Сталь сердечника статора отстужается при помощи специально предназначенных охладителей, изготовленных из силумина. Воздух, который заполняет сам генератор, охлаждается водой.

    О бъединенное охлаждение

    Такие устройства с водородно-водяным охлаждением бывают мощностью 160 – 1200 Мегаватт. А количество оборотов в минуту составляет 3000. Такие агрегаты имеют прямое охлаждение обмотки статора при помощи дистиллированной воды, а ротора – водородом. Наружная их поверхность охлаждается при помощи только лишь водорода.

    Корпус таких агрегатов изготавливается цельным, сварным, газонепроницаемым, неразъемным, а также, его внутренняя поверхность обладает дополнительными поперечными кольцами жесткости, которая способствует закреплению сердечника. С двух сторон статор закрывается наружными пластинами.

    Это касается таких агрегатов, нагрузка которых составляет 160 – 220 МВт. Если же мощность турбогенератора составляет 300 – 800 Мегаватт, то каркас таких устройств выполняется разъемным из трех секций. Заполняется он водородом, который потом обращается с помощью двух осевых вентиляторов, закрепленных на самом роторе. Остужается он в газоохладители турбогенератора.

    Возбуждающий режим

    В виде основного такого метода служит бесщеточная система. Возбудитель закрытого типа обладает изолированной вентиляцией. Для турбогенераторов, производительность которых составляет 160 – 800 Мегаватт, используется тиристорная система, с самостоятельной активизацией. Сам возбудитель представляет собой синхронный трехфазный генератор переменного тока.

    При помощи термопреобразователей осуществляется проверка теплового режима главных узлов, а также охлаждающей системы. Подсоединяются они к установке центрального управления.

    Благодаря специальной аппаратуре можно осуществлять контроль давления, расход охлаждающей воды, дистиллята, следить за давлением масла и т.п. С ее помощью происходит непрерывное отслеживание всех изменений заданных параметров от нормы.

    На данных агрегатах устанавливают и специальные системы защиты. Такая характеристика турбогенератора сообщает о снижении уровня воды, расходуемой в газоохладителе.

    Компенсатор Реактивной Мощности (КРМ) является одним из видов электроустановочного оборудования, снижающий значения полной мощности, и в зависимости от природы реактивной мощности может быть, как индуктивного характера (индуктивный реактор) так и емкостного (конденсатор).

    Индуктивные реакторы используют, как правило, для компенсации емкостной составляющей мощности (линий электропередач большой протяженности).

    Конденсаторные батареи используют для компенсации реактивной составляющей индуктивной мощности, что ведет к снижению полной мощности (печи индуктивности).

    Одним из факторов, приводящие к возникновению потерь в электрических сетях промышленных предприятий является реактивная составляющая протекающего тока при наличии индуктивной нагрузки (нагрузка в промышленных и бытовых электросетях носит обычно активно-индуктивный характер). Соответственно, из электрической сети происходит потребление какактивной, так и реактивной энергии [6].

    Активная энергия преобразуется в полезную – механическую, тепловую и пр. энергии. Реактивная энергия расходуется на создание электромагнитных полей в электродвигателях, трансформаторах, индукционных печах, сварочных трансформаторах, дросселях и осветительных приборах.

    Реактивная энергия может производиться непосредственно в месте потребления.

    Уменьшение реактивной составляющей в общей мощности электроэнергии широко распространена во всем мире и известна под термином компенсация реактивной мощности (КРМ) - одного из наиболее эффективных средств обеспечения рационального использования электроэнергии.

    КРМ позволяет:

    • разгрузить от реактивного тока распределительные сети (распределительные устройства, кабельные и воздушные линии), трансформаторы и генераторы;

    • снизить потери мощности и падение напряжения в элементах систем электроснабжения;

    • сократить расходы на электроэнергию;

    • ограничить влияние высших гармоник и сетевых помех;

    • уменьшить асимметрию фаз.

    Регулируемые компенсаторы реактивной мощности КРМ

    Автоматическая установка компенсации реактивной мощности (АУКРМ) предназначена для повышения и автоматического регулирования коэффициента мощности (cos φ) электроустановок промышленных предприятий и распределительных сетей напряжением 0,4 кВ частоты 50 Гц.

    Установки обеспечивают поддержание заданного коэффициента мощности в часы максимальных и минимальных нагрузок, исключают режим генерации реактивной мощности, а также:

    • автоматически отслеживает изменение реактивной мощности нагрузки в компенсируемой сети и, в соответствии с заданным значением cos φ исключается генерация реактивной мощности в сеть;

    • исключается появление в сети перенапряжения, потому что отсутствует перекомпенсация, которая возможна при использовании нерегулируемых конденсаторных установок;

    • визуально отслеживаются все основные параметры компенсируемой сети;

    • контролируется режим эксплуатации и работа всех элементов конденсаторной установки, при этом учитывается время работы и количество подключений каждой секции, что позволяет оптимизировать износостойкость контакторов и распределения нагрузки в сети;

    • предусмотрена система аварийного отключения конденсаторной установки и предупреждения обслуживающего персонала;

    • возможно автоматическое подключение принудительного обогрева или вентиляции конденсаторной установки.

    Нерегулируемые компенсаторы реактивной мощности КРМ

    Установка компенсации реактивной мощности (компенсатор реактивной мощности УКРМ) с фиксированным значением мощности улучшает cos φ, путем включения конденсатора.

    Предназначена она для поддержания коэффициента мощности в распределительных сетях трёхфазного переменного тока. Нерегулируемые конденсаторные установки низкого напряжения типа УКРМ выпускаются мощностью от 2,5 до 100 кВАр.

    Также позволяют снизить затраты на оплату электроэнергии. Нерегулируемые установки компенсации реактивной мощности рассчитаны на эксплуатацию в закрытых производственных помещениях при нормальных условиях эксплуатации в районах с умеренным и холодным климатом.

    Устройство силовых трансформаторов

    Силовым трансформатором называется электромагнитное устройство, преобразующее переменный ток одного напряжения в переменный ток другого более высокого или более низкого напряжения при неизменной частоте. Трансформаторы выпускаются стандартных мощностей: 10, 16, 25, 40 и 63 кВ•А с увеличением каждого из этих значений в 10, 100, 1000 и 10000 раз [1].

    Трансформаторы разделяются по способу охлаждения на масляные, сухие, с дутьевым и водомасляным охлаждением; по исполнению — для внутренней и наружной установок, герметичные и уплотненные; по числу фаз — одно- и трехфазные; по числу обмоток — двух- и трехобмоточные; по способу регулирования напряжения — под нагрузкой и при отключенном напряжении.

    Сухие (без масла) трансформаторы выпускаются мощностью до 1600 кВ А и напряжением до 15, 75 кВ с естественным охлаждением. Достоинством сухих трансформаторов является их пожаробезопасность.

    Для масляных трансформаторов с естественным масляным охлаждением, используемых в закрытых помещениях, обеспечивается непрерывная вентиляция для отвода нагретого, и доступа холодного воздуха.

    Основными параметрами трансформаторов являются: номинальные напряжения обмоток, номинальная мощность, номинальный ток и номинальная нагрузка обмоток.

    Обмотки первичного и вторичного напряжения трехфазных двухобмоточных трансформаторов соединяют по схемам звезда-звезда или звезда-треугольник. В зависимости от направления намотки обмотки, последовательности соединений фазных обмоток и чередования фаз при соединении в звезду или треугольник можно получить ту или иную группу соединений. Наиболее распространенные схемы соединений обмоток трансформаторов приведены на рис. 11.

    Силовые трансформаторы имеют обозначения, состоящие из букв и цифр. Первая буква указывает число фаз: О — однофазный и Т — трехфазный. Вторая буква указывает вид охлаждения: М — масляное естественное; Д — масляное с дутьевым охлаждением и естественной циркуляцией масла; ДЦ — масляное с дутьевым охлаждением и принудительной циркуляцией масла; MB — масляно-водяное охлаждение масла с естественной циркуляцией; Ц — масляно-водяное охлаждение с принудительной циркуляцией масла; С, СЗ, СТ — естественное воздушное охлаждение соответственно при открытом, закрытом и герметизированном исполнениях; у трансформаторов с заполнением негорючих диэлектриков вид охлаждения обозначается буквами Н — естественное охлаждение негорючим жидким диэлектриком и НД — охлаждение негорючим жидким диэлектриком с принудительным дутьем.

    Третья буква указывает число обмоток (Т — трехобмоточный), четвертая — выполнение одной из обмоток с устройством регулирования напряжения под нагрузкой — РПН и обозначается буквой Н [1].


    Рисунок 11. Схемы соединений обмоток двухобмоточных трансформаторов:
    а — звезда-звезда с выведенной нейтралью; б — звезда-треугольник; в — звезда с выведенной нейтралью-треугольник.

    Мощность и высшее напряжение трансформатора указываются в обозначениях дробью. Числитель дроби указывает номинальную мощность в кВ•А, а знаменатель — высшее напряжение обмоток (ВН) в кВ [1].

    Например, трансформатор типа ТДТН-15000/35 — трехфазный, с дутьевым охлаждением, трехобмоточный, с регулировкой напряжения под нагрузкой, мощностью 15000 кВ•А и напряжением ВН — 35 кВ [1].

    Основой конструкции силового двухобмоточного трансформатора (рис. 12) является его активная часть, состоящая из магнитопровода 6 с расположенными на нем обмотками низшего (НН) и высшего 3 (ВН) напряжений, отводов 8 и переключателя напряжения 9. Магнитопровод 6 трансформатора набирается из листов специальной электротехнической стали толщиной 0,35 или 0,5 мм. Отдельные части магнитопровода собирают в жесткую конструкцию из трех вертикальных стержней с верхним 5 и нижним 2 ярмами с помощью стяжных шпилек и прессующих ярмовых балок, образуя замкнутый контур. Между собой листы стали изолированы лаком или теплостойким покрытием на основе жидкого стекла. Ярмовыми балками из швеллеров листы стали магнитопровода плотно опрессовывают при помощи шпилек. Ярмовые балки и шпильки изолируют от активной стали магнитопровода. Активная часть трансформатора помещается в металлический бак, который предохраняет обмотки от повреждений и является резервуаром для трансформаторного масла [1].

    Рисунок 12 - Трехфазный силовой трансформатор мощностью 1000 кВ•А с масляным охлаждением:
    1 — бак; 2, 5 — нижняя и верхняя ярмовые балки; 3 — обмотка ВН; 4 — регулировочные отводы; 6 — магнитопровод; 7 —деревянные планки; 8 — отвод от обмотки ВН; 9 — переключатель; 10 — подъемная шпилька; 11 — крышка; 12 — подъемное кольцо; 13 — ввод ВН; 14 — ввод НН; 15 — выхлопная труба; 16 — расширитель; 17 — маслоуказатель; 18 — газовое реле; 19 — циркуляционные трубы; 20 — маслоспускной кран; 21 — катки.

    Обмотки трансформаторов изготовляют из электротехнической меди или алюминия прямоугольного, или круглого сечения. Чаще всего применяют цилиндрические и винтовые обмотки. Их отделяют от сердечника, друг от друга и от стенок бака цилиндрами из изолирующего материала (бакелита).

    Цилиндрические обмотки выполняют из круглых или прямоугольных проводов с изоляцией из хлопчатобумажной пряжи и наматывают в один слой (однослойная), в два слоя (двухслойная) или несколько слоев (многослойная) одним или несколькими проводами по винтовой линии (рис. 13).


    Рисунок 13 - Однослойная (а), двухслойная (б) и многослойная (в) конструкции цилиндрических обмоток силовых трансформаторов:
    1 — выравнивающие кольца; 2 — коробочка из электрокартона; 3 - конец первого слоя обмотки; 4 - планка из бука; 5 - отводы для регулирования напряжения.

    Начала и концы обмоток располагают на их противоположных торцах. Однослойные и двухслойные обмотки применяются в качестве обмоток низкого напряжения, а многослойные — в качестве обмоток ВН в трансформаторах мощностью до 630 кВ•А.

    Цилиндрические многослойные обмотки изготовляют из круглого провода, намотанного на бумажно-бакелитовый цилиндр, плотно укладывая витки слоями и прокладывая между ними листы кабельной бумаги (рис. 14, в). При большом числе слоев между ними укладывают планки из древесины твердых пород или из нескольких слоев полосок склеенного электрокартона, образуя вертикальные каналы. Такая конструкция обеспечивает хороший отвод теплоты для охлаждения обмотки. Для увеличения механической прочности обмотку обматывают хлопчатобумажной лентой, пропитывают глифталевым лаком и запекают при температуре около 100 С.

    В более мощных трансформаторах применяют непрерывные обмотки из плоских проводов без разрывов и паек при переходе из одной катушки в другую. Эти обмотки наматываются на рейки, уложенные на бумажно-бакелитовом цилиндре и образующие в своих промежутках вертикальные каналы охлаждения, а горизонтальные каналы создаются с помощью пакетов из электротехнического картона, собранных на проваренных в масле деревянных планках. Они применяются в силовых трансформаторах в качестве обмоток низшего и высшего напряжения.

    Баки силовых трансформаторов изготовляют из листовой стали. Они могут быть овальной или прямоугольной форм. Баки изготовляют гладкими, а для лучшего охлаждения масла — ребристыми, трубчатыми и с радиаторами. Баки устанавливают на катки для перемещения трансформаторов в пределах помещения подстанции. Сверху бак закрывается съемной крышкой, на которой размещают вводные изоляторы, термометр, пробивной предохранитель, переключатель отводов обмотки для регулирования напряжения, расширитель, газовое реле и предохранительную трубу.

    Для присоединения обмоток к токопроводящим шинам применяют фарфоровые изоляторы, через которые проходят медные стержни.

    Изоляционное масло в трансформаторе используется в качестве изолирующей и охлаждающей среды. В процессе эксплуатации трансформатора масло стареет и теряет свои первоначальные изоляционные свойства за счет воздействия на него кислорода, влаги, грязи и высокой температуры.

    Для измерения температуры верхних слоев масла в трансформаторах мощностью до 1000 кВ•А применяют стеклянный термометр с шкалой от -20 до +100 ºС, а в трансформаторах свыше 1000 кВ•А — термометрический сигнализатор ТС-100, который служит для контроля температуры масла и для сигнализации или отключения трансформатора при превышении температуры свыше допустимого предела.

    В тех случаях, когда вторичные сети имеют изолированную от земли нейтраль, для безопасной работы применяется пробивной предохранитель, имеющий воздушные промежутки. В аварийном режиме воздушные промежутки пробиваются, и обмотка низкого напряжения заземляется.

    Для поддержания необходимого уровня напряжения потребителей у трансформаторов с регулировкой напряжения (рис. 14, а и б) проводят изменение коэффициента трансформации с помощью переключателей ответвлений обмоток (рис. 15). Регулирование напряжения проводится в пределах ±5 %. Трансформаторы с РПН (регулирование под нагрузкой) имеют большое число ступеней и более широкой диапазон регулирования (до 20%).


    Рисунок 14 - Схемы трансформаторов с РПН без реверсирования (а) и с реверсированием (б):
    1 — основная обмотка; 2 — регулировочная обмотка; 3 — устройство переключения; 4 — переключатель (реверсор).






    Рисунок 15 - Переключатели ТПСУ-9-120/11 (а), ТПСУ-9-120/10 (б) отводов обмоток для регулирования напряжения силовых трансформаторов и их схема (в):
    1 — сегментный контакт; 2 — коленчатый вал; 3, 4 — бумажно-бакелитовая трубка; 5 — резиновое уплотнение; 6 — крышка трансформатора; 7 — фланец; 8 — стопорный болт; 9 — колпак; 10 — указатель положения; 11 — неподвижный контакт.

    1   2   3   4   5


    написать администратору сайта