Для получения высокого коэффициента передачи геометрические размеры необходимо выбирать в соотношении l/b = 23. Полупроводниковый слиток разрезается на пластины, которые посредством шлифовки доводятся до требуемой толщины. Далее пластины разрезают на прямоугольники нужных размеров, которые снабжают четырьмя омическими контактами. Два из них предназначены для подведения к датчику напряжения от внешнего источника. Они выполняются по всей ширине пластины, чтобы получить равномерное распределение входного тока по сечению пластины на всей ее длине. Два других электрода предназначены для регистрации э. д. с. Холла. Эти контакты должны быть расположены строго в одном сечении, в противном случае между ними будет возникать разность потенциалов и при отсутствии магнитного поля за счет протекания тока. Учитывая, что выходной ток очень мал, иногда выходные электроды выполняют точечными. Из теллурида и селенида ртути датчики Холла могут быть изготовлены также прессованием порошков при температуре около 500 К. Пленочные датчики изготавливают посредством нанесения тонких пленок на подложку методом вакуумного испарения исходного материала. Материалом подложки могут служить слюда, керамика или другие изоляционные материалы. Материал подложки должен обеспечить хорошую адгезию напыляемого материала и иметь с ним близкий температурный коэффициент линейного расширения. Контакты пленочных датчиков наносят испарением в вакууме. Для стабилизации параметров готовую пленку в течение нескольких часов подвергают термостарению при температуре 100° С. Пленочные датчики тоньше пластиночных. Их толщина определяется в основном подложкой. Преимуществом их является высокое сопротивление, что удобно при согласовании с нагрузкой. Получили развитие два новых прогрессивных метода изготовления датчиков Холла. Это метод диффузии, примеси я метод эпитаксиального выращивания. Оба эти метода широко применяют при изготовлении диодов и транзисторов. Посредством диффузии примеси на материале p-типа образуется p- n-переход. На диффузионном n-слое размещаются электроды, а p- n-переход служит изолирующим слоем (рис. 4). При эпитаксиальном выращивании подложкой может быть как монокристаллическая пластина того же материала, так и изоляционные материалы. Датчики Холла, полученные этими методами, имеют преимущества монокристаллических датчиков (высокий коэффициент Холла и хорошую стабильность) и преимущества пленочных (высокую чувствительность). Толщина рабочего слоя у них не более, чем у пленочных. Для защиты от механических и климатических воздействий изготовленный датчик покрывают синтетической смолой и приклеивают к изоляционной подложке или помещают в бронзовый корпус. Последний способствует отводу от датчика тепла. На рис. 5 приведено несколько конструктивных исполнений датчика Холла. На рис. 5, апоказан датчик, выпускаемый без корпуса и подлежащий заливке компаундом после установки в воздушный зазор магнитопровода. На рис. 5, в приведен датчик с оболочкой из эпоксидной смолы. На рис. 5, бпоказан датчик, заключенный в ферритовую оболочку с симметричной магнитной системой. Ферритовое основание 1 и крышка 4имеют одинаковые размеры. Полупроводниковая пластина 6наклеена прямо на ферритовое основание. Ферритовый стержень 3концентрирует магнитный поток на поверхность датчика. Стенки 5и 2выполнены из немагнитного материала и обеспечивают необходимый зазор между ферритовым стержнем и полупроводниковой пластиной (обычно 2—3 мкм). Н а основе эффекта Холла можно создать ряд устройств и приборов, обладающих ценными и даже уникальными свойствами и занимающих важное место в измерительной технике, автоматике, радиотехнике и т. д. Так как э. д. с. Холла пропорциональна току I и индукции магнитного поля, то при постоянной величине тока величина э. д. с. будет пропорциональна только индукции магнитного поля. Это позволяет использовать датчики Холла для измерения индукции магнитных полей. |